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Gábor Szabó
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Introduction

Unless specified otherwise, we will stick to the following notation
throughout this talk:

G is a finite group.

A is a separable, unital C∗-algebra.

α, β or γ are finite group actions on such a C∗-algebra.

Definition (Izumi)

Let α : Gy A be given, and let ω ∈ βN \ N be a free ultrafilter. Then α
has the Rokhlin property, if there exists a unital, equivariant
∗-homomorphism

(C(G), G-shift) ↪−→ (Aω ∩A′, αω).

We also call such α a Rokhlin action.
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Introduction

Why is this property interesting?

To give one reason (among many), the crossed products by actions with
the Rokhlin property are comparably easy to determine.

Theorem (Izumi)

Let A be simple, G a finite group and α : Gy A a Rokhlin action. Then
K∗(Aoα G) is isomorphic to the subgroup

⋂
g∈G ker(id−K∗(αg)) inside

K∗(A).

For example, if A belongs to a certain class of C∗-algebras classified by
K-theory, then (often) so does Aoα G and this helps to determine its
isomorphism class.

Theorem (Barlak-S)

Let A be given, G a finite group and α : Gy A a Rokhlin action. Assume
moreover that A ∼=M|G|∞ ⊗A. Then AoαG decomposes as a direct limit
of matrix algebras over A, with connecting maps depending only on α.
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Introduction

Unfortunately, Rokhlin actions are not always prevalent.

Example

The Cuntz algebra O∞ and the Jiang-Su algebra Z admit no finite group
actions with the Rokhlin property.

However, there are certain canonical examples.

Notation

Let G be a finite group. The matrix algebra M|G| is generated by elements
{eg,h}g,h∈G satisfying the relations eh1,h2 · eh3,h4 = δh2,h3eh1,h4 . One
denotes

M|G|∞ =
⊗

N
M|G| = lim

−→

{
M⊗n|G| , [x 7→ x⊗ 1|G|]

}
.

Example

Consider the left-regular representation λ : G→ U(M|G|) defined by
λ(g) =

∑
h∈G egh,h. One obtains an induced Rokhlin action

βG : GyM|G|∞ by βGg =
⊗

NAd(λ(g)) for all g ∈ G.
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Rokhlin actions on UHF-absorbing C∗-algebras

Fact

If A ∼=M|G|∞ ⊗A, then the canonical embedding A ↪−→M|G|∞ ⊗A given
by x 7→ 1⊗ x is approximately unitarily equivalent to an isomorphism.

Example

Let us assume that A ∼=M|G|∞ ⊗A. Let α : Gy A be any action. Then

βG ⊗ α is an action with the Rokhlin property on M|G|∞ ⊗A. Identifying
this with A in the above way, this yields a Rokhlin action on A that is
pointwise approximately unitarily equivalent to α.

This seems to suggest that on M|G|∞-absorbing C∗-algebras, there should
be plenty of G-actions with the Rokhlin property, in particular with all
kinds of K-theories.
However, it is in general not at all clear how many ordinary G-actions exist
on a given C∗-algebra A, even if one assumes that A is classifiable.
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Rokhlin actions on UHF-absorbing C∗-algebras

Reminder

For a finite group action α : Gy A, the crossed product Aoα G is
defined as the universal C∗-algebra generated by a copy of A, and a
unitary representation g 7→ ug subject to the relations ugau

∗
g = αg(a) for

all a ∈ A.

Reminder

Let us consider the special case G = Zp for some p ≥ 2. Set
ξp = exp(2πi/p) ∈ C. Then a group action α : Zp y A naturally gives
rise to the so-called dual action α̂ : Zp y Aoα G by setting

α̂(u) = ξpu and α̂(a) = a for all a ∈ A.

Theorem (Takai-duality)

One always has (Aoα Zp)oα̂ Zp ∼=Mp ⊗A.

(All of this makes sense for actions of finite abelian groups as well.)
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Rokhlin actions on UHF-absorbing C∗-algebras

Definition

An action α : Gy A is called locally representable, if there is an
increasing sequence of unital, α-invariant sub-C∗-algebras An ⊂ A with
A =

⋃
n∈NAn, such that for all n, there is a unitary representation

wn : G→ U(An) such that α|An = Ad(wn).

Let C be a class of C∗-algebras. α is called locally C-representable, if it is
locally representable and the An above may be chosen to be isomorphic to
C∗-algebras in C.

Theorem (Barlak-S)

Assume A ∼=M|G|∞ ⊗A. Let G be abelian and let α : Gy A be a

Rokhlin action. Then its dual α̂ : Ĝy Aoα G is locally
{A}-representable.
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Rokhlin actions on UHF-absorbing C∗-algebras

Notation

Let RG(A) denote the set of all Rokhlin actions of G on A.

Reminder

A Kirchberg algebra is separable, simple, nuclear and purely infinite.

The following will serve as the main black box for the rest of the talk:

Theorem (Barlak-S)

Let A be a unital UCT Kirchberg algebra. Assume that A ∼=M|G|∞ ⊗A.
Then the natural map

RG(A) −→ Hom
(
G,Aut

(
K0(A), [1A]0,K1(A)

))
given by

[g 7→ αg] 7−→ [g 7→ K∗(αg)]

is surjective.

11 / 23



Rokhlin actions on UHF-absorbing C∗-algebras

Notation

Let RG(A) denote the set of all Rokhlin actions of G on A.

Reminder

A Kirchberg algebra is separable, simple, nuclear and purely infinite.

The following will serve as the main black box for the rest of the talk:

Theorem (Barlak-S)

Let A be a unital UCT Kirchberg algebra. Assume that A ∼=M|G|∞ ⊗A.
Then the natural map

RG(A) −→ Hom
(
G,Aut

(
K0(A), [1A]0,K1(A)

))
given by

[g 7→ αg] 7−→ [g 7→ K∗(αg)]

is surjective.

11 / 23



Rokhlin actions on UHF-absorbing C∗-algebras

Notation

Let RG(A) denote the set of all Rokhlin actions of G on A.

Reminder

A Kirchberg algebra is separable, simple, nuclear and purely infinite.

The following will serve as the main black box for the rest of the talk:

Theorem (Barlak-S)

Let A be a unital UCT Kirchberg algebra. Assume that A ∼=M|G|∞ ⊗A.
Then the natural map

RG(A) −→ Hom
(
G,Aut

(
K0(A), [1A]0,K1(A)

))
given by

[g 7→ αg] 7−→ [g 7→ K∗(αg)]

is surjective.

11 / 23



Rokhlin actions on UHF-absorbing C∗-algebras

Reminder (from Wilhelm’s talk yesterday)

Let A,B be two unital Kirchberg algebras satisfying the UCT. Then

A ∼= B iff
(
K0(A), [1A]0,K1(A)

)∼= (K0(B), [1B]0,K1(B)
)

Moreover, any triple (G0, u,G1) for countable abelian groups G0 3 u and
G1 arises as the K-theory triple of some unital UCT Kirchberg algebra.

Fact

Let α : Gy A be a Rokhlin action.

If A is simple, so is Aoα G.

If A is purely infinite, so is Aoα G.

If A satisfies the UCT, so does Aoα G.

In particular, the class of (UCT) Kirchberg algebras is closed under
forming crossed products by Rokhlin actions.
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Some examples

Fact

Let p ≥ 2 be a natural number. Let us pick a primitive p-th root of unity
ξp = exp(2πi/p) ∈ C. Then the ring generated by Z and ξp, written Z[ξp],
coincides with the ring of integers in the number field Q(ξp). The additive
group of this ring is well-known to be free abelian, with rank equal to
[Q(ξp) : Q], which coincides with the value of Euler’s phi-function at p

ϕ(p) =
∣∣{j ∈ {1, . . . , p} | gcd(j, p) = 1}

∣∣.
For example, if p happens to be prime, then ϕ(p) = p− 1.
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Some examples

Example

Let p ≥ 2 be a natural number. Then there exists a locally UCT
Kirchberg-representable action γp : Zp y O2 such that Ap = O2 oγp Zp is

KK-equivalent to M
⊕ϕ(p)
p∞ .

Proof: Choose a unital UCT Kirchberg algebra Ap with K-theory

(K0(Ap), [1Ap ]0,K1(Ap)) ∼= (Z[1p ]
⊕ϕ(p), 0, 0).

By the UCT, Ap is in fact KK-equivalent to M
⊕ϕ(p)
p∞ , since they have

identical K-theory. Now K0(Ap) is isomorphic to the additive group of the
ring Z[1p , ξp]. Under this identification, we obtain an order p automorphism
σ : K0(Ap)→ K0(Ap) by x 7→ ξp · x. Note that obviously ker(id−σ) = 0.
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Some examples

Since the K-theory of Ap is uniquely p-divisible, we have Ap ∼=Mp∞ ⊗Ap.

By our black box, there exists a Rokhlin action α : Zp y Ap with
K0(α) = σ. Note that by the properties of σ, the crossed product
Ap oα Zp is a unital UCT Kirchberg algebra with trivial K-theory. Hence
Ap oα Zp ∼= O2.

Under this identification, the dual action γp = α̂ : Zp y O2 yields a locally
{Ap}-representable action with

O2 oγp Zp ∼= (Ap oα Zp)oα̂ Zp ∼=Mp ⊗Ap ∼= Ap.

But what do these actions have to do with the UCT problem?
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But what do these actions have to do with the UCT problem?
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Finite group actions on O2 and the UCT

Here are some well-known facts:

Fact

Let n ∈ N be a natural number and A1, . . . , An separable C∗-algebras.
Then each Ai satisfies the UCT if and only if A1 ⊕ · · · ⊕An satisfies the
UCT.

Fact

Let A be a separable C∗-algebra, and let p, q ≥ 2 be two relatively prime
natural numbers. Then A satisfies the UCT if and only if both Mp∞ ⊗A
and Mq∞ ⊗A satisfy the UCT.
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Finite group actions on O2 and the UCT

Here comes our main application concerning the UCT problem:

Theorem (partly Kirchberg, maybe even ’most’ of it)

Let p, q ≥ 2 be two distinct prime numbers. The following are equivalent:

(1) All separable, nuclear C∗-algebras satisfy the UCT.

(2) All unital Kirchberg algebras satisfy the UCT.

(3) If β : Zp y O2 and γ : Zq y O2 are pointwise outer, locally
Kirchberg-representable actions, then both O2 oβ Zp and O2 oγ Zq
satisfy the UCT.

(4) If γ : Zpq y O2 is a pointwise outer, locally Kirchberg-representable
action, then O2 oγ Zpq satisfies the UCT.
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Finite group actions on O2 and the UCT

Proof: We will leave out anything involving (4).
The implications (1) =⇒ (2) and (2) =⇒ (3) are trivial. Let us show
the implication (3) =⇒ (2).

Assume that (2) is false. Then we can pick a unital Kirchberg algebra A
that does not satisfy the UCT. By the previous two facts, it follows that

either A⊗M⊕(p−1)p∞ or A⊗M⊕(q−1)q∞ does not satisfy the UCT. Let us
assume the first one.

Recall the action γp : Zp y O2 from before. Then it follows that

(A⊗O2)oidA⊗γp Zp ∼= A⊗Ap ∼KK A⊗M⊕(p−1)p∞

does not satisfy the UCT. Recall that γp is pointwise outer and locally
Kirchberg-representable. Moreover, Kirchberg’s absorption theorem asserts
A⊗O2

∼= O2. In particular, this gives a counterexample to (3).
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Finite group actions on O2 and the UCT

Lastly, let us sketch (2) =⇒ (1), which is entirely due to Kirchberg.

Definition

Let p ∈ O∞ be some non-trivial projection with 0 = [p]0 ∈ K0(O∞) = Z.
Then define Ost

∞ = pO∞p.

Remark

Kirchberg-Phillips classification (in its more general form) tells us that Ost
∞

is (up to isomorphism) the unique unital Kirchberg algebra with
Ost
∞ ∼KK C and which also admits a unital embedding of O2.
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Finite group actions on O2 and the UCT

Now take any separable, nuclear C∗-algebra A. Out of pure convenience,
we assume that A is unital. Without loss of generality, we may assume
A ∼= A⊗Ost

∞ by the previous remark. Since there is a unital embedding
ι : O2 → A, pick s1, s2 ∈ A with 1A = s∗1s1 = s∗2s2 = s1s

∗
1 + s2s

∗
2.

There is also some unital embedding κ : A→ O2 by Kirchberg’s
embedding theorem. Define the unital endomorphism

ϕ : A→ A, ϕ(x) = s1xs
∗
1 + s2(ι ◦ κ)(x)s∗2.

Set B = lim
−→
{A,ϕ}. Clearly B is again separable, unital, nuclear and

purely infinite. One can also show quite easily that B is simple. Moreover,
ϕ is KK-trivial. In such a case, the embedding ϕ∞ : A→ B is
well-known to yield a KK-equivalence.

To summarize, we have found a unital Kirchberg algebra that is
KK-equivalent to A. This yields the implication (1) =⇒ (2).
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Thank you for your attention!
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