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Nuclear dimension and Z-stability

In recent years, the most satisfying, abstract classification theorems for
simple C∗-algebras have relied on the (understanding of) regularity
properties present in the Toms-Winter conjecture.

Conjecture (Toms-Winter)
For a non-elementary, separable, nuclear, simple, unital C∗-algebra A,
TFAE:
(1) dimnuc(A) <∞;
(2) A ∼= A⊗Z;
(3) A has strict comparison for positive elements.

In this talk, we shall mainly be focused on “(1) ⇐⇒ (2)”. The implication
“(1) =⇒ (2)” is due to Winter and is very non-trivial. The implication
“(2) =⇒ (1)” is more mysterious, but has seen progress lately.

4 / 20



Nuclear dimension and Z-stability

In recent years, the most satisfying, abstract classification theorems for
simple C∗-algebras have relied on the (understanding of) regularity
properties present in the Toms-Winter conjecture.

Conjecture (Toms-Winter)
For a non-elementary, separable, nuclear, simple, unital C∗-algebra A,
TFAE:
(1) dimnuc(A) <∞;
(2) A ∼= A⊗Z;
(3) A has strict comparison for positive elements.

In this talk, we shall mainly be focused on “(1) ⇐⇒ (2)”. The implication
“(1) =⇒ (2)” is due to Winter and is very non-trivial. The implication
“(2) =⇒ (1)” is more mysterious, but has seen progress lately.

4 / 20



Nuclear dimension and Z-stability

In recent years, the most satisfying, abstract classification theorems for
simple C∗-algebras have relied on the (understanding of) regularity
properties present in the Toms-Winter conjecture.

Conjecture (Toms-Winter)
For a non-elementary, separable, nuclear, simple, unital C∗-algebra A,
TFAE:
(1) dimnuc(A) <∞;
(2) A ∼= A⊗Z;
(3) A has strict comparison for positive elements.

In this talk, we shall mainly be focused on “(1) ⇐⇒ (2)”. The implication
“(1) =⇒ (2)” is due to Winter and is very non-trivial. The implication
“(2) =⇒ (1)” is more mysterious, but has seen progress lately.

4 / 20



Nuclear dimension and Z-stability

It makes sense to consider the Toms-Winter conjecture independent of
classification, and in broader generality. Considering some existing results
in this direction, let us ask:

Do finite nuclear dimension and
Z-stability go hand in hand beyond the simple case?

Conjecture (posed implicitly or partially before by others)
Let A be a separable, nuclear C∗-algebra without elementary quotients.
Then dimnuc(A) <∞ if and only if A ∼= A⊗Z.

In particular:

Question
Is dimnuc(A⊗Z) <∞ for every separable, nuclear C∗-algebra A?
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Nuclear dimension and Z-stability

Some results in the direction of this general conjecture:

Theorem (Robert-Tikuisis)
Let A be a separable, nuclear C∗-algebra without elementary quotients.
Assume that no simple quotient of A is purely infinite, and that Prim(A)
is either Hausdorff or has a basis of compact-open sets. If
dimnuc(A) <∞, then A ∼= A⊗Z.

Theorem (Tikuisis-Winter)
One has dr

(
C0(X)⊗Z

)
≤ 2 for every locally compact space X.
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Strongly purely infinite C∗-algebras

Definition (Kirchberg-Rørdam)
A C∗-algebra A is called strongly purely infinite, if for every positive matrix(
a1 x∗

x a2

)
∈M2(A) and ε > 0, there exist d1, d2 ∈ A satisfying

∥∥∥∥∥
(
d1 0
0 d2

)∗(
a1 x∗

x a2

)(
d1 0
0 d2

)
−
(
a1 0
0 a2

)∥∥∥∥∥ ≤ ε.

Remark
If A is simple, this coincides with the usual definition of pure infiniteness.
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Strongly purely infinite C∗-algebras

Theorem (Kirchberg-Rørdam, Toms-Winter, Kirchberg)
Let A be a separable, nuclear C∗-algebra. TFAE:
(1) A is strongly purely infinite;
(2) A ∼= A⊗O∞;
(3) A ∼= A⊗Z and A is traceless.

In this way, we can view the class of strongly purely infinite C∗-algebras as
a special subclass of Z-stable C∗-algebras.

Question
Is dimnuc(A⊗O∞) <∞ for every separable, nuclear C∗-algebra A?

Today I would like to convince you that: Yes!
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Strongly purely infinite C∗-algebras

Purely infinite C∗-algebras are fairly accessible for classification. For
separable, nuclear, simple, purely infinite C∗-algebras, there is the
complete KK-theoretic classification of Kirchberg and Phillips. (This
becomes K-theoretic classification upon assuming the UCT)

It has been
comparably difficult for the stably finite situation to catch up to this level
until recent years, and in fact the most major leaps forward have been
accomplished this year.

However, Kirchberg has established a classification theorem for
non-simple, strongly purely infinite C∗-algebras that remains unparalleled:

Theorem (Kirchberg)
Let A and B be two separable, nuclear, stable, strongly purely infinite
C∗-algebras. Then A ∼= B, if and only if, X := Prim(A) ∼= Prim(B) and
there exists a KK(X;_,_)-equivalence from A to B.
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A dimension reduction argument

Let us first recall a well-known special case of our main question:

Theorem (Matui-Sato, BEMSW, later improved by BBSTWW)
Every Kirchberg algebra has nuclear dimension at most three.

The proof of BEMSW relies on a more general principle:

Theorem (BEMSW)
For every C∗-algebra A, one has dim+1

nuc(A⊗O∞) ≤ 2 dim+1
nuc(A⊗O2).

The result for Kirchberg algebras is then deduced out of the
Kirchberg-Phillips absorption theorems A ∼= A⊗O∞ and A⊗O2 ∼= O2.

Sketch of proof for the dimension formula.
Find pairs of c.p.c. ≈-order zero maps ϕ0, ϕ1 : O2 → O∞ with
ϕ0(1) + ϕ1(1) ≈ 1, and use the fact that O∞ is strongly
self-absorbing.
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A dimension reduction argument

Let us now consider a more general 2-colored embedding result:

Theorem (S)
Let ω be a free ultrafilter. Let A be a separable C∗-algebra and e ∈ A a
positive element of norm one. Then there exist two c.p.c. order zero maps
ϕ0, ϕ1 : A→ (O∞)ω with ϕ0(e) + ϕ1(e) = 1.

For this we need an observation from BEMSW:

Lemma (Winter)
In a unital, simple, purely infinite C∗-algebra, all positive elements with full
spectrum [0, 1] are mutually approximately unitarily equivalent.
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A dimension reduction argument

Proof.
Since O∞ contains the compact operators K, every separable,
quasidiagonal C∗-algebra embeds into (O∞)ω. By a result of Voiculescu,
the cone over A is quasidiagonal. So we can find a ∗-monomorphism
ψ : CA→ (O∞)ω.

Now h = ψ(id(0,1]⊗e) has full spectrum [0, 1].
Find a unitary u ∈ (O∞)ω with uhu∗ = 1− h. Then simply define
ϕ0 = ψ(id(0,1]⊗_) and ϕ1 = Ad(u) ◦ ϕ0.

We can use this 2-colored embedding to prove a more general dimension
formula for O∞-absorbing C∗-algebras:

Theorem (S)
Let B be a separable, non-zero, O∞-absorbing C∗-algebra. Then for every
separable C∗-algebra A, we have dim+1

nuc(A⊗O∞) ≤ 2 dim+1
nuc(A⊗B).
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A dimension reduction argument

Theorem (continued)
Let B be a separable, non-zero, O∞-absorbing C∗-algebra. Then for every
separable C∗-algebra A, we have dim+1

nuc(A⊗O∞) ≤ 2 dim+1
nuc(A⊗B).

Proof.
We may assume that A ∼= A⊗O∞. As B is non-zero, we may choose
some positive element e ∈ B of norm one. Apply the 2-colored embedding
theorem to find c.p.c. order zero maps ϕ0, ϕ1 : B → (O∞)ω with
ϕ0(e) + ϕ1(e) = 1. We get a commutative diagram of the form

A
x7→x⊗1 //

x7→x⊗e ""

(A⊗O∞)ω

A⊗B
idA⊗ϕ0+idA⊗ϕ1

88

Since A ∼= A⊗O∞, the nuclear dimension of the horizontal map equals
the nuclear dimension of A. This shows the claim.
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On Rørdam’s purely infinite AH algebra

Definition
Let {tn}n∈N ⊂ [0, 1) be a dense sequence. For every n, define the
∗-homomorphism

ϕn : C0
(
[0, 1),M2n

)
→ C0

(
[0, 1),M2n+1

)
via

ϕn(f)(t) = diag
(
f(t), f

(
max(t, tn)

))
for all t ∈ [0, 1).

Set A[0,1] = lim
−→

{
C
(
[0, 1),M2n

)
, ϕn

}
.

Theorem (Rørdam)
A[0,1] is O∞-absorbing.
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On Rørdam’s purely infinite AH algebra

Theorem (Kirchberg-Rørdam)
A[0,1] is O2-absorbing, and it is homotopic to zero in an ideal-system
preserving way.

Definition (Kirchberg-Rørdam)
A C∗-algebra A is homotopic to zero in an ideal-system preserving way, if
there is a continuous path of ∗-endomorphisms {ρt}t∈[0,1] with ρ0 = 0,
ρ1 = idA and ρt(J) ⊂ J for every t ∈ [0, 1] and all ideals J ⊂ A.

The class of such nuclear C∗-algebras is closed under tensoring with
arbitrary separable, nuclear C∗-algebras.

Theorem (Kirchberg-Rørdam)
Let A be a separable, nuclear, strongly purely infinite C∗-algebra that is
homotopic to zero in an ideal-system preserving way. Then A is an AH
algebra of topological dimension one.
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On Rørdam’s purely infinite AH algebra

By combining this deep structural result with the previous dimension
reduction argument, we get:

Theorem
For every separable, nuclear C∗-algebra A, we have dimnuc(A⊗O∞) ≤ 3.

Proof.
Assume A 6= 0. By the results of Kirchberg-Rørdam, the tensor product
A⊗A[0,1] is an AH algebra with topological dimension one. Thus

dim+1
nuc(A⊗O∞) ≤ 2 dim+1

nuc(A⊗A[0,1]) = 4.

This gives dimnuc(A⊗O∞) ≤ 3.
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Thank you for your attention!
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