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Abstract

These notes serve as supplementary material for a 3-hour lecture
series presented at the 16th Spring Institute for Noncommutative Ge-
ometry and Operator Algebras (NCGOA), from the 14th to the 19th
of May 2018.

The plan of this lecture series is to give an introduction into some
of the core ideas leading to the classification of single automorphisms
on C*-algebras up to cocycle conjugacy. The emphasis shall be on the
key methods and techniques, which will culminate in a master plan
of sorts dictated by the past work of Kishimoto and others. More
specifically, the plan is to discuss:

• the Rokhlin property for automorphisms;

• approximate cohomology vanishing as a consequence of the Rokhlin
property;

• the Evans–Kishimoto intertwining argument.

From a practical point of view, this introduction is intended to be a
gentle one, which will lead us to make special assumptions along the
way in order to make some proofs more palatable. Nevertheless, the
level of generality shall be high enough to arrive at some interesting
statements, for example Kishimoto’s theorem that there is a unique
Rokhlin automorphism on every infinite-dimensional UHF algebra. If
time permits, we may even end up proving a theorem together which
goes beyond what can be found in the present literature.

The notes are purposefully written in far greater detail than what
will be presented in the lectures; the introduction given here is even
exclusive to the written material. Please beware that only little proof-
reading has been done for these notes.
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Introduction

There are two main classes of objects in the theory of operator algebras,
namely C∗-algebras and von Neumann algebras. As we know from the
Gelfand–Naimark theorem, a commutative C∗-algebra can be naturally ex-
pressed as C0(X) for some locally compact Hausdorff space X. C∗-algebras
are therefore sometimes intuitively regarded as noncommutative topological
spaces, while von Neumann algebras are regarded as noncommutative mea-
sure spaces for a similar reason. This analogy is helpful for understanding the
difference between the two classes, and to view the theory of group actions on
C∗-algebras and von Neumann algebras as noncommutative generalizations
of topological dynamics and ergodic theory, respectively.

An impressive application of noncommutative dynamical systems is given
within the Connes–Haagerup classification of injective factors, which in part
involves the classification of cyclic group actions on certain factors; see [2, 3,
4, 5]. In part guided by such applications, group actions on operator algebras
have been of recurring and great interest in the field. A far reaching general-
ization of Connes’ classification of cyclic group actions has been accomplished
by many hands, and we now know that countable amenable group actions on
injective factors are completely classified up to cocycle conjugacy by certain
computable invariants; see [15, 34, 36, 18, 16] and in particular [25, 26] for a
unified treatment which happens to be in line with this lecture series. Group
actions on C∗-algebras, on the other hand, offer more complicated and in-
teresting structure, but also pose a greater challenge with respect to their
classification.

Definition. Fix a locally compact group G. Let α : Gy A be a point-norm
continuous action on a C∗-algebra.

(1) An α-cocycle is a strictly continuous map w : G→ U(M(A)) satisfying
the cocycle identity wgh = wgαg(wh) for all g, h ∈ G.1

(2) Let β : G y B be some other action. One says that α and β are
cocycle conjugate, if there exists an isomorphism ϕ : A → B and an
α-cocycle w such that

Ad(wg) ◦ αg = ϕ−1 ◦ βg ◦ ϕ, g ∈ G.
1The so-called coboundaries are those cocycles that emerge from a single unitary via

the formula wg = vαg(v∗). These are in a sense considered trivial.
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In general, the classification of G-actions on a C∗-algebra up to cocycle con-
jugacy is a very difficult task, even when restricting to more special sub-
classes of G-actions. Consulting the literature, a pattern emerges which
is common to many successful solutions of this problem; see for example
[19, 7, 20, 21, 32, 12, 17, 27, 28, 29, 13, 35, 37]. This culminates in a master
plan of sorts invented by Kishimoto, which can be sketched as follows:2

Suppose we have two actions α, β : G y A, for which we want to show
that they are cocycle conjugate.

S1: Show that α and β satisfy some kind of Rokhlin-type property.3

S2: Exploiting the first step, achieve the following two things:

S2.a: Show that there are α-cocycles w such that Ad(wg)◦αg ≈ βg
holds approximately in point-norm over a large finite set in
A, and uniformly over a compact set in G. Do the same in
the reverse direction, exchanging the roles of α and β.

S2.b: Show that α has the approximately central cohomology van-
ishing property: For every α-cocycle w with [a, wg] ≈ 0 over
some large finite set, find a unitary v with [v, a] ≈ 0 and
wg ≈ vαg(v

∗). Do the same for β.

S3: Combining the previous steps, apply the Evans–Kishimoto intertwin-
ing technique to achieve the desired outcome.

Without already knowing a lot of the relevant literature, the above recipe
may not be particularly illuminating at first. The point of this lecture se-
ries is to introduce the reader / audience to this approach by seeing part
of it in action. In order to make this introduction as gentle as possible
without becoming uninteresting, we shall restrict our attention to single au-
tomorphisms4, and add some assumptions along the way to save us from an
overwhelming amount of complicated setup.

2I would like to emphasize that this is only a rough and naive recipe, which often needs
further refinement to obtain interesting new results going beyond the state-of-the-art.

3For example, this may be automatic from some natural condition like outerness, but
is often highly non-trivial to show.

4Read: actions of Z
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In particular, Step S2.a above becomes redundant for single automor-
phisms, as cocycles with respect to Z-actions are nothing but single uni-
taries.5 From this point of view, Step S2.a asks for single automorphisms
to be approximately unitarily equivalent to each other, which is a separate
problem we may outsource to classification theory of C∗-algebras.

Moreover, we will in this lecture series completely disregard the above
Step S1, i.e., how to obtain the Rokhlin property from a priori more natural
outerness conditions. While this is a very interesting topic, it could easily
fill its own lecture series, and may be touched upon by other lectures during
the conference. Instead we will always assume the Rokhlin property and see
how it can be used to end up with hard classification results.

To summarize, the two key techniques communicated in this lecture series
will be how to achieve Steps S2.b and S3 above for single automorphisms.

1 The Rokhlin property

Definition 1.1. Let A and B be two C∗-algebras. Suppose that α is an
automorphism on A, and that β is an automorphism on B. One says that α
and β are cocycle conjugate, if there exists an isomorphism ϕ : A → B and
a unitary w ∈ U(M(A)) such that Ad(w) ◦ α = ϕ−1 ◦ β ◦ ϕ.6

Definition 1.2. Let α be an automorphism on a C∗-algebra A. A unitary
u ∈ U(1 +A) is called a coboundary, if it can be expressed as u = vα(v∗) for
some v ∈ U(1 + A).

Definition 1.3. Let A be a separable, unital C∗-algebra.7 Let α be an
automorphism on A. We say that it has the Rokhlin property, if for every
n ∈ N there exist approximately central sequences of projections ek, fk ∈ A
such that

1 = lim
k→∞

n−1∑
j=0

αj(ek) +
n∑
l=0

αl(fk).

5Given a single unitary u, one obtains its associated α-cocycle by defining un =
uα(u) · · ·αn−1(u) for n ≥ 0 and a similar formula for n < 0.

6In the case of single automorphisms, one may also call this outer conjugacy. For other
types of dynamical systems, that usually means something weaker than cocycle conjugacy.

7Unitality is for convenience only; the non-unital version involves approximate behavior
in the strict topology, or the corrected central sequence algebra (A∞ ∩A′)/(A∞ ∩A⊥).
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Picture for the relation in terms of e, f ∈ A∞ ∩ A′:
(ej := αj(e), fl := αl(f))

e0
α %%

e1
α %%

e2
α %%

e3
��
· · ·

))

en−1

f0
α &&

f1
α &&

f2
α &&

f3
��
· · ·

))

fn−1
α &&

fn

For convenience we will sometimes consider the strict Rokhlin property,
which means that one may always choose fk = 0 above.8

Example 1.4. Let X be a Cantor set. A homeomorphism ϕ on X is ape-
riodic if and only if the induced automorphism on C(X) has the Rokhlin
property.

Example 1.5. Every infinite-dimensional UHF algebra admits a Rokhlin
automorphism.9

Proof. For a fixed n ∈ N, we consider the direct sum Mn⊕Mn+1, and observe
that the unitary

sn =


0 1 . . . 0

0 1 . . .
...

. . . . . .
...

. . . 1
1 0 . . . 0

⊕



0 1 . . . 0

0 1
...

...
. . . . . .

. . . . . .
...

. . . 1
1 0 . . . 0


8Historically, variants of this have been the first type of Rokhlin property considered by

Herman–Ocneanu, but it is genuinely stronger than the modern definition. For example,
in contrast to Example 1.5, the strict Rokhlin property in this sense can only occur for
the universal UHF algebra.

9More generally, the argument presented here can be adapted to show that every unital
approximately divisible C∗-algebra admits an asymptotically inner automorphism with the
Rokhlin property. This is a bit more delicate, so we omit the details.
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defines an inner automorphism for which the (standard) minimal projections
e0, . . . , en−1 ∈ Mn ⊕ 0 and f0, . . . , fn ∈ 0 ⊕ Mn+1 satisfy the relation in
Definition 1.3 on the nose, minus the approximate centrality.

Now let U be an infinite-dimensional UHF algebra. Then we may identitfy

U ∼=
⊗
n,k∈N

Un,k,

where for each n, k ∈ N, the C∗-algebra Un,k is also an infinite-dimensional
UHF algebra. For all n, k ∈ N, we can find some unital ∗-homomorphism
ιn,k : Mn ⊕Mn+1 → Un,k.

10 Under the above identification, we define

α =
⊗
n,k∈N

Ad(ιn,k(sn)) ∈ Aut(U),

which will satisfy the Rokhlin property by construction.

Theorem 1.6 (Kishimoto [19]). Suppose A is an infinite-dimensional UHF
algebra and α an automorphism on A such that the crossed product A oα Z
has a unique tracial state. Then α has the Rokhlin property.

Theorem 1.7 (Nakamura [32]). Suppose A is a Kirchberg algebra and α an
automorphism on A which is aperiodic.11 Then α has the Rokhlin property.

2 Approximate cohomology vanishing

In this section, we go over how to achieve Step S2.b in the approach out-
lined in the introduction, at least for single automorphisms satisfying the
Rokhlin property. In order to make the proofs more palatable, let us make
the following strong assumption on our C∗-algebras from this point forward:

Notation 2.1. Let A be a C∗-algebra. For the rest of this lecture series, we
will say that A satisfies property (?), if there exists some positive constant
L > 0 such that the following holds:

10Every sufficiently big number N can be realized as N = an + b(n + 1) for natural
numbers a, b ≥ 0. Thus there is some N such that Mn ⊕Mn+1 ⊂ MN ⊂ Un,k unitally,
using that the latter must contain matrix algebras of arbitrarily large size.

11This means that αj is outer for j 6= 0.
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For all ε > 0 and F⊂⊂A, there exist δ > 0 and G⊂⊂A such that for all
unitaries u ∈ U(1 + A) satisfying

max
a∈G

‖[u, a]‖ ≤ δ,

there exists an L-Lipschitz path u : [0, 1]→ U(1 + A) satisfying

u0 = 1, u1 = u, and max
a∈F

max
0≤t≤1

‖[ut, a]‖ ≤ ε.

Remark 2.2. In terms of sequence algebras, property (?) just means that
the unitary group U

(
1 + (A∞ ∩ A′)

)
is connected.

Example 2.3. All AF C∗-algebras satisfy property (?). Moreover, every
C∗-algebra A with A ∼= A⊗O2 satisfies property (?).

Proof. The caseA ∼= A⊗O2 follows from a well-known argument of Haagerup–
Rørdam [10, Lemma 5.1]; see [37, Section 5] for a slightly more distilled
version of the argument.

The case of AF algebras is well-known. Let us give a sketch of proof
for UHF algebras A = U: Suppose F⊂⊂U is given. Then, due to the UHF
structure, there is a tensor decomposition U ∼= Mp ⊗ U1 such that F is
approximately contained in Mp⊗ 1. So we may as well assume F ⊆Mp⊗ 1.
Let G be the finite set of matrix units generating this copy of Mp ⊗ 1. Then
it is an easy exercise to see that any unitary (in fact any element), which
approximately commutes with the elements in G sufficiently well, is close to
1Mp ⊗ U1. Thus if δ > 0 is small enough, then every (δ,G)-approximately
central unitary u ∈ U can be continuously perturbed to a unitary in 1⊗ U1

with finite spectrum via a short path, where in turn it can be π-Lipschitz
connected to the unit in 1⊗U1, preserving (ε,F)-approximate centrality.

The following argument is due to Herman–Ocneanu [11], with subsequent
adaptations and refinements due to Kishimoto and many others.

Lemma 2.4. Let A be a separable C∗-algebra with property (?). Let α be an
automorphism on A with the Rokhlin property. Then for every ε > 0 and
F⊂⊂A, there exists δ > 0 and G⊂⊂A such that whenever u ∈ U(1 + A) is a
unitary satisfying

max
a∈G
‖[u, a]‖ ≤ δ,

then there exists a unitary v ∈ U(1 + A) satisfying

‖u− vα(v∗)‖ ≤ ε and max
a∈F
‖[v, a]‖ ≤ ε.
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Remark. During the lectures, the conclusion of this lemma was referred to
as the one-cocycle property for α.

Proof. For convenience, let us assume that A is unital and that α has the
strict Rokhlin property. In terms of sequence algebras, the claim just means
that every unitary u ∈ A∞∩A′ can be expressed as a coboundary u = vα(v∗)
for some unitary v ∈ A∞ ∩ A′.

So let u ∈ A∞ ∩ A′ be given. It is enough to show that, given ε > 0, we
may find v such that ‖u − vα(v∗)‖ ≤ ε. So let us also fix ε > 0 for the rest
of the proof. Let L > 0 be the constant supplied to us by property (?). We
choose n ∈ N with L

n
≤ ε.

The unitary u corresponds to the cocycle given by the formula uk :=
uα(u) · · ·αk−1(u) for k ≥ 1. Property (?) implies that there exists an L-
Lipschitz path z : [0, 1]→ U(A∞ ∩ A′) with z0 = 1 and z1 = α−n(u∗n).

As α has the (strict) Rokhlin property by assumption, there exists a
projection e ∈ A∞∩A′ such that 1 =

∑n−1
j=0 α

j(e). Without loss of generality,

we may assume that e also commutes with elements of the form αk(zt) as
well as αk(u) for any k ∈ Z and t ∈ [0, 1]. Set

v =
n−1∑
j=0

αj(e) · uj · αj(zj/n).

This defines a unitary in A∞ ∩ A′. We compute12

vα(v∗)

=
n−1∑
j,k=0

αj(e) · ujαj(zj/n) · αk+1(z∗k/n)α(u∗k) · αk+1(e)

= e · αn(z∗n−1/n)︸ ︷︷ ︸
≈un

α(u∗n−1) +
n−1∑
j=1

αj(e) · ujαj(zj/nz∗j−1/n︸ ︷︷ ︸
≈1

)α(u∗j−1)

≈ε
n∑
j=1

αj(e) · ujα(u∗j−1)︸ ︷︷ ︸
=u

= u.

This finishes the proof.

12The key step uses that zj/n is L/n-close to zj−1/n and the fact that we have arranged
L/n ≤ ε.
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3 Evans–Kishimoto intertwining

The following argument crucially uses the approximate cohomology vanishing
Lemma 2.4. It is originally due to Evans–Kishimoto; see [7].

Theorem 3.1. Let A be a separable C∗-algebra with property (?). Let α
and β be automorphisms on A with the Rokhlin property. Then α and β are
approximately unitarily equivalent if and only if α and β are cocycle conjugate
via an approximately inner automorphism on A.

Idea of proof. Our assumption means that there are unitaries u such that
Ad(u) ◦ α ≈ β. If u is close to an α-coboundary, then we may actually
get β ≈ Ad(u) ◦ α ≈ Ad(vα(v∗)) ◦ α = Ad(v) ◦ α ◦ Ad(v∗).

In other words, β is point-norm-close to an automorphism which is
conjugate to α. But this is still far from the desired statement!

The naive idea would be to choose sequences of un, vn which achieve
this approximation better and better as n → ∞. However, why should
the inner automorphisms given by vn approach any given map?

This is where the approximate centrality kicks in: If we first perturb
β by a unitary beforehand, we can ensure that α and β are already close
in point-norm. Then the map Ad(u) does only very little, which means
that u is approximately central. Our Lemma 2.4 then allows us to pick
v as an approximately central unitary. Once we replace α by Ad(u) ◦ α,
we can repeat this process, but with reversing the roles of α and β.

We will then inductively construct unitaries un, vn in this zigzag fash-
ion (alternating between odd / even n) such that

(i) Ad(u2(k−1)u2(k−2) · · ·u0) ◦ α︸ ︷︷ ︸
=:α2k

≈ Ad(u2k−1u2k−3 · · ·u1) ◦ β︸ ︷︷ ︸
=:β2k+1

;

(ii) u2k ≈ v2kα2k(v
∗
2k) and u2k+1 ≈ v2k+1β2k+1(v

∗
2k+1);

(iii) vn is approximately central as n→∞.

Considering Ad(v2k · · · v0) ◦α ◦Ad(v∗0 · · · v∗2k) versus Ad(v2k+1 · · · v1) ◦ β ◦
Ad(v∗1 · · · v∗2k+1), the approximate centrality (iii) ensures that these inner
automorphisms converge as k →∞. The resulting conjugates of α and β
will not agree, but condition (i) gives one a unitary sequence correcting
the error, which will in turn converge by the coboundary condition (ii).
This will result in the desired cocycle conjugacy of α and β.

9



Detailed proof. Since “⇐” is trivial, we have to show “⇒”. So let us assume
that α and β are approximately unitarily equivalent.

In what will first be a lot of setup, we are going to apply Lemma 2.4 in a
certain zig-zag way to choose unitaries uk, vk ∈ U(1 +A) and construct new
automorphisms α2k, β2k+1 out of them with certain properties. Once this is
done, we will be able to apply a Cauchy sequence argument, and (through
a limit process) obtain approximately inner automorphisms ϕ0, ϕ1 on A and
unitaries w0, w1 ∈ U(1 + A) such that

ϕ0 ◦ Ad(w0) ◦ α ◦ ϕ−10 = ϕ1 ◦ Ad(w1) ◦ β ◦ ϕ−11 .

Note: We will use without mention that we may purturb the automor-
phisms α or β with inner automorphisms without changing the standing
assumption that both have the Rokhlin property and that α ≈u β.

We will now implement this strategy. Let Fn⊂⊂A be an increasing se-
quence of finite sets in the unit ball whose union is dense.

We set α0 = α and β1 = β. Apply Lemma 2.4 to β1 and choose a pair
(δ1,G1) for the pair (1/2,F1). Without loss of generality δ1 ≤ 1/2. Define

G ′1 = β−11 (G1) ∪ F1.

We may choose a unitary u0 ∈ U(1 + A) such that

max
a∈G′1
‖β1(a)− u0α0(a)u∗0‖ ≤ δ1/2.

Set α2 = Ad(u0) ◦ α0, v0 = u0, and

F ′2 = F2 ∪ v0F2v
∗
0.

Apply Lemma 2.4 to α2 and choose a pair (δ2,G2) for the pair (1/4,F ′2) with
δ2 ≤ min(1/4, δ2). Set

G ′2 = α−12 (G2) ∪ β−11 (G1) ∪ F2.

We may choose a unitary u1 ∈ U(1 + A) such that

max
a∈G′2
‖α2(a)− u1β1(a)u∗1‖ ≤ δ2/2.
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If we observe closely, we see that in particular

max
a∈G1
‖[u1, a]‖ ≤ δ1.

By our choice of the pair (δ1,G1), this means that there exists a unitary
v1 ∈ U(1 + A) such that

‖u1 − v1β1(v1)∗‖ ≤ 1/2 and max
a∈F1

‖[v1, a]‖ ≤ 1/2.

We set β3 = Ad(u1) ◦ β1 and

F ′3 = F3 ∪ v1F3v
∗
1.

Apply Lemma 2.4 to β3 and choose the pair (δ3,G3) for the pair (1/8,F ′3)
with δ3 ≤ min(1/8, δ2). Set

G3 = β−13 (G3) ∪ α−12 (G2) ∪ F3.

Choose a unitary u2 ∈ U(1 + A) such that

max
a∈G′3
‖β3(a)− u2α2(a)u2‖ ≤ δ3/2.

Observing closely again, we see that in particular

max
a∈G2
‖[u2, a]‖ ≤ δ2.

By our choice of the pair (δ2,G2), this means that there exists a unitary
v2 ∈ U(1 + A) such that

‖u2 − v2α2(v2)
∗‖ ≤ 1/4 and max

a∈F2

‖[v2, a]‖ ≤ 1/4.

Define α4 = Ad(u2) ◦ α2 and continue to proceed like above, halving the
parameters in each step. Inductively, we obtain unitaries uk, vk ∈ U(1 + A)
and automorphisms α2k, β2k+1 satisfying the following list of properties:

α2(k+1) = Ad(u2k) ◦ α2k; (e3.1)

β2k+3 = Ad(u2k+1) ◦ β2k+1; (e3.2)

max
a∈F2k+1

‖β2k+1(a)− α2k(a)‖ ≤ 2−(2k+1); (e3.3)
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‖u2k − v2kα2k(v
∗
2k)‖ ≤ 2−2k; (e3.4)

‖u2k+1 − v2k+1β2k+1(v
∗
2k+1)‖ ≤ 2−(2k+1); (e3.5)

max
a∈F ′

n

‖[vn, a]‖ ≤ 2−n. (e3.6)

F ′2k = F2k ∪ Ad(v2(k−1) · · · v0)(F2k); (e3.7)

F ′2k+1 = F2k+1 ∪ Ad(v2k−1 · · · v1)(F2k+1); (e3.8)

For each n ∈ N, let us define unitaries via

Un =

{
u2k+1 · · ·u1 , n = 2k + 1

u2k · · ·u0 , n = 2k;

and

Vn =

{
v2k+1 · · · v1 , n = 2k + 1

v2k · · · v0 , n = 2k.

Taking a close look at conditions (e3.7) and (e3.6) we see that sequences of
the form V2kaV

∗
2k as well as V ∗2kaV2k are Cauchy for all a ∈

⋃
nFn and hence

for all a ∈ A. In particular, the point-norm limit

ϕ0 = lim
k→∞

Ad(V2k) (e3.9)

exists and yields an (approximately inner) automorphism on A. Similarly,
we obtain

ϕ1 = lim
k→∞

Ad(V2k+1). (e3.10)

Next observe that for the unitaries given by

Xn =

{
V ∗2k+1U2k+1β(V2k+1) , n = 2k + 1

V ∗2kU2kα(V2k) , n = 2k,

conditions (e3.1)+(e3.2) imply

Ad(V2k) ◦ Ad(X2k) ◦ α ◦ Ad(V ∗2k) = Ad(U2k) ◦ α = α2(k+1) (e3.11)

and

Ad(V2k+1) ◦ Ad(X2k+1) ◦ β ◦ Ad(V ∗2k+1) = Ad(U2k+1) ◦ β = β2k+3. (e3.12)
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We claim that the unitary sequences X2k and X2k+1 are convergent. Indeed,
we compute for k ≥ 1:

X2k = V ∗2kU2kα(V2k)
= V ∗2(k−1)v

∗
2ku2kU2(k−1)α(v2kV2(k−1))

(e3.1)
= V ∗2(k−1) v

∗
2ku2kα2k(v2k︸ ︷︷ ︸

≈1

V2(k−1))U2(k−1)

(e3.4)
≈2−2k V

∗
2(k−1)α2k(V2(k−1))U2(k−1)

(e3.1)
= V ∗2(k−1)U2(k−1)α(V2(k−1)) = X2(k−1).

In particular, the unitaries X2k form a Cauchy sequence, and therefore have
a limit

w0 = lim
k→∞

X2k ∈ U(1 + A). (e3.13)

Similarly we obtain

w1 = lim
k→∞

X2k+1 ∈ U(1 + A). (e3.14)

We claim that these now do the trick as claimed earlier. Indeed, combining
everything we have done so far, we get

ϕ0 ◦ Ad(w0) ◦ α ◦ ϕ−10
(e3.9),(e3.13)

= lim
k→∞

Ad(V2k) ◦ Ad(X2k) ◦ α ◦ Ad(V ∗2k)

(e3.11)
= lim

k→∞
α2(k+1)

(e3.3)
= lim

k→∞
β2k+3

(e3.12)
= lim

k→∞
Ad(V2k+1) ◦ Ad(X2k+1) ◦ β ◦ Ad(V ∗2k+1)

(e3.10),(e3.14)
= ϕ1 ◦ Ad(w1) ◦ β ◦ ϕ−11 .

This finishes the proof.

If we restrict to some special classes of C∗-algebras satisfying property (?)
and appeal to classification theory, we can obtain the following corollaries.

Corollary 3.2 (Evans–Kishimoto [7]). Let A be an AF C∗-algebra. Let α
and β be automorphisms on A with the Rokhlin property. Then α and β are
cocycle conjugate if and only if the induced automorphisms K0(α) and K0(β)
on the scaled ordered K0-group of A are conjugate.
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Proof. Let κ be an automorphism on the scaled ordered K0-group such that
K0(α)◦κ = κ◦K0(β). By the classification theory of AF algebras [?], there is
an automorphism σ on A such that K0(σ) = κ. If we replace β by σ◦β ◦σ−1,
we may thus assume that K0(α) = K0(β). Appealing again to classification
theory, this means that α and β are approximately unitarily equivalent. As
AF algebras have property (?), the claim follows from Theorem 3.1.

Corollary 3.3. Every infinite-dimensional UHF algebra carries a unique
automorphism with the Rokhlin property up to cocycle conjugacy.

Although surely known to some experts, the next corollary has never
been recorded anywhere. It is an easy consequence of Theorem 3.1 but goes
beyond what can be found in the literature. Although the underlying class
of examples is clearly very different from the AF case, I would like to draw
the reader’s attention to the fact that the proof is still virtually the same as
for AF algebras.

Corollary 3.4. Let A be a separable, nuclear C∗-algebra with A ∼= A⊗O2.
Assume that A is either unital or stable. Let α and β be automorphisms
on A with the Rokhlin property. Then α and β are cocycle conjugate if and
only if their induced homeomorphisms on the prime ideal space Prim(A) are
conjugate.

Proof. We proceed similarly as above. Let κ be a homeomorphism on the
prime ideal space so that α(κ(J)) = κ(β(J)) for all prime ideals J in A.
Appealing to the classification of nuclear O2-absorbing C∗-algebras [8], there
exists an automorphism σ on A that lifts κ. Replacing β by σ ◦ β ◦ σ−1, we
may assume that α and β induce the same maps on the ideal lattice. But this
implies that they are approximately unitarily equivalent. As A has property
(?), the claim follows from Theorem 3.1.

4 Closing remarks

Remark 4.1. Property (?) from Notation 2.1 has a useful generalization in
the non-unital case:

Instead of requiring the path to be L-Lipschitz and to have the given
unitary u as the endpoint, we could require instead that the path is approx-
imately L-Lipschitz in the strict topology13 and that its endpoint approx-

13That is, maps of the form [t 7→ ut · a] are L-Lipschitz for contractions a ∈ F
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imates u in the strict topology. In sequence algebra language, this condi-
tion would mean that the image of the unitary group U(1 + A∞ ∩ A′) in
F∞(A) = (A∞ ∩ A′)/(A∞ ∩ A⊥) is connected.

This weaker property can actually be used to obtain all the relevant re-
sults we have obtained so far, with some minor modifications in some state-
ments and proofs. This is for example relevant when handling certain stably
projectionless C∗-algebras such as the Razak–Jacelon algebra W or other
C∗-algebras absorbing it; see [14, 6], [33, Section 7] and [37, Theorem 5.12].
Such C∗-algebras turn out to satisfy this weaker property, but in general not
our property (?) from Notation 2.1.

Remark 4.2. One conceptual reason why Theorem 3.1 has any right to
work is that, under property (?), approximate unitary equivalence of auto-
morphisms coincides with asymptotic unitary equivalence.14 When we have
a C∗-algebra A for which this phenomenon fails, we quickly reach the limits
of our methods so far: It is clear that certain properties of automorphisms
such as approximate or asymptotic innerness are preserved under cocycle
conjugacy. So if A carries two approximately inner automorphisms α and β
with the Rokhlin property and only one of them is asymptotically inner, we
see that the statement of Theorem 3.1 cannot hold.

Example 4.3. Let θ ∈ [0, 1] \Q and consider the irrational rotation algebra

Aθ = C∗
(
u, v unitaries | uv = e2πiθvu

)
.

Let ρ ∈ R \Q[θ] and consider the automorphism α on Aθ defined by α(u) =
e2πiρu and α(v) = v. Then α is approximately inner, has the Rokhlin prop-
erty, but is not asymptotically inner.15 On the other hand, if we fix some
isomorphism Aθ ∼= Aθ ⊗Z and induce an automorphism β on Aθ via pulling
back id⊗σ for some sufficiently outer automorphism σ on Z, it is possible
obtain an asymptotically inner automorphism with the Rokhlin property.16

Remark 4.4. If we want to go beyond C∗-algebras satisfying the (very re-
strictive) property (?), we see from the above that we have to take into

14Coming up with the (elementary) proof of this fact is a good exercise.
15The relevant obstruction, the so-called rotation map, does not vanish.
16The precise details are beyond the scope of these notes. However, as irrational ro-

tation algebras are approximately divisible, one could alternatively apply the generalized
construction from the proof of Example 1.5.
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account asymptotic unitary equivalence of automorphisms. In addition, we
can see from the proof of Lemma 2.4 that it was crucual for the cohomology
vanishing argument to have some method of connecting approximately cen-
tral unitaries to the unit in an approximately central way, and moreover we
need to be able to do this with a uniform Lipschitz constant.

Without property (?) and in particular when K1 6= 0, this is of course
impossible in general. The correct substitute for property (?) turns out to
be the so-called basic homotopy lemma in its various forms, which usually
tells us for which kind of unitaries one may find such homotopies; see for
example [1, 22, 23, 9]. This requires one to deal with most of the C∗-algebraic
secondary invariants, which are already essential in the proof of the Elliott
classification theorems, even if they never show up in the final statements.

All of this showcases the additional layers of technical difficulty that
need to be overcome to obtain more general classification results for sin-
gle automorphisms, let alone actions of more general groups; see for example
[20, 28, 24].

Remark 4.5. In the unital case, the Rokhlin property requires the existence
of projections. This puts another obvious limitation on our methods so far:
If the unital C∗-algebra A has no non-trivial projections, it cannot have
automorphisms with the Rokhlin property. It is therefore a challenge to
figure out what to do in the absence of projections, such as for the Jiang–Su
algebra A = Z.

One promising approach appears to be Matui–Sato weak Rokhlin prop-
erty [30, 31], which is formulated purely in terms of positive elements. It
then becomes a non-trivial fact that, within the relevant interesting cases,
their weak Rokhlin property for an automorphism α ∈ Aut(A) is equivalent
to saying that some (or all) UHF stabilization α⊗ idU ∈ Aut(A⊗U) has the
regular Rokhlin property.
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