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Main result

Today, I would like to convince you of the following:

Theorem

Let X be a compact metric space of finite covering dimension and let
α : Zm y X be a free continuous group action.

Then the transformation
group C*-algebra C(X) oα Zm has finite nuclear dimension.

In particular, when α is assumed to be free and minimal, then
C(X) oα Zm is Z-stable.
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Rokhlin dimension for Zm-actions

Notation

We will use the following notations:

X is a compact metric space that is (mostly) assumed to have finite
covering dimension.

A is a unital C*-algebra.

Either α : Zm y A is a group action via automorphisms or
α : Zm y X is a continuous group action on X. In the topological
case, α is usually assumed to be free.

If M is some set and F ⊂M is a finite subset, we write F⊂⊂M .

For n ∈ N, let
Bm
n = {0, . . . , n− 1}m ⊂ Zm.

If m is known from context, we write Bn instead.
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Rokhlin dimension for Zm-actions

Definition (Hirshberg-Winter-Zacharias)

Let A be a unital C*-algebra, and let α : Zm y A be a group action via
automorphisms. We say that the action α has (cyclic) Rokhlin dimension
d, and write dimcyc

Rok(α) = d, if d is the smallest natural number with the
following property:

For all F⊂⊂A, ε > 0, n ∈ N, there exist positive contractions (f
(l)
v )l=0,...,d

v∈Bn

in A satisfying the following properties:

(1) ‖1A −
d∑
l=0

∑
v∈Bn

f (l)
v ‖ ≤ ε.

(2) ‖f (l)
v f

(l)
w ‖ ≤ ε for all l = 0, . . . , d and v 6= w in Bn.

(3) ‖αv(f (l)
w )− f (l)

v+w‖ ≤ ε for all l = 0, . . . , d and v, w ∈ Bn. (!)

(4) ‖[f (l)
v , a]‖ ≤ ε for all l = 0, . . . , d , v ∈ Bn and a ∈ F .

If there is no such d, we write dimcyc
Rok(α) =∞.
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Rokhlin dimension for Zm-actions

The usefulness of this notion is illustrated in the following theorem:

Theorem (Hirshberg-Winter-Zacharias 2012 for m = 1.)

Let A be a unital C*-algebra and let α : Zm y A be a group action via
automorphisms. Then

dimnuc(Aoα Zm) ≤ 2m(dimnuc(A) + 1)(dimcyc
Rok(α) + 1)− 1.
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Rokhlin dimension for Zm-actions

Definition (Winter)

Let (X,α,Zm) be a topological dynamical system. We say that α has
Rokhlin dimension d, and write dimRok(α) = d, if d is the smallest natural
number with the following property:

For all n ∈ N, there exists a family of open sets

R =
{
U (l)
v | l = 0, . . . , d, v ∈ Bn

}
in X (we call this a Rokhlin cover) such that

U
(l)
v = αv(U

(l)
0 ) for all l = 0, . . . , d and v ∈ Bn.

For all l, the sets
{
U

(l)
v | v ∈ Bn

}
are pairwise disjoint.

R is an open cover of X.

If there is no such d, then dimRok(α) =∞.
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Rokhlin dimension for Zm-actions

Definition (Winter)

Let (X,α,Zm) be a topological dynamical system. We say that α has
dynamic dimension d, and write dimdyn(α) = d, if d is the smallest natural
number with the following property:
For all n ∈ N and all open covers U of X, there exists a family of open sets

R =
{
U

(l)
i,v | l = 0, . . . , d, v ∈ Bn, i = 1, . . . ,K(l)

}
in X (we call this a Rokhlin cover) such that

U
(l)
i,v = αv(U

(l)
i,0 ) for all l = 0, . . . , d, i ≤ K(l) and v ∈ Bn.

For all l, the sets
{
U

(l)
i,v | v ∈ Bn, i ≤ K(l)

}
are pairwise disjoint.

R is an open cover of X that refines U .

If there is no such d, then dimdyn(α) =∞.
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Rokhlin dimension for Zm-actions

To set the C*-algebraic Rokhlin dimension in relation to this topological
business, the following fact is key:

Lemma

Let α : Zm y X be a continuous group action on a compact metric space.
Let ᾱ : Zm y C(X) be the induced C*-algebraic action. Then

dimcyc
Rok(ᾱ) ≤ 2m(dimRok(α) + 1)− 1.
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Rokhlin dimension for Zm-actions

The following is one of the few known results concerning the finiteness of
Rokhlin dimension in concrete cases:

Theorem (Hirshberg-Winter-Zacharias 2012)

For a minimal homeomorphism ϕ : X → X on an infinite space, we have

dimRok(ϕ) ≤ 2(dim(X) + 1)− 1

and
dimdyn(ϕ) ≤ 2(dim(X) + 1)2 − 1.

Although the statement is purely topological, the proof made heavy use of
the structure of the orbit-breaking algebras

AY = C∗(C(X) ∪ u · C0(X \ Y )) ⊂ C(X) oϕ Z for Y = Y ⊂ X.
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The (controlled) marker property for topological actions

Almost simultaniously, Yonathan Gutman published topological results
that enabled a purely topological and easy proof of this theorem.

It uses
the so called marker property for aperiodic homeomorphisms.

Definition (Markers)

Let α : Gy X be a continuous group action. Let F⊂⊂G. An F -marker is
an open set Z ⊂ X with

αg(Z) ∩ αh(Z) = ∅ for all g 6= h in F .

X =
⋃
g∈G

αg(Z).

We say that α has the marker property if there exist F -markers for all
F⊂⊂G.
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The (controlled) marker property for topological actions

Definition (Controlled markers)

Let α : Zm y X be a continuous group action. Let F⊂⊂Zm and L ∈ N.
An L-controlled F -marker is an open set Z ⊂ X with

αv(Z) ∩ αw(Z) = ∅ for all v 6= w in F .

X =
L⋃
l=1

⋃
v∈F

αvl+v(Z) for some v1, . . . , vL ∈ Zm.

We say that α has the L-controlled marker property if there exist
L-controlled Bn-markers for all n ∈ N.
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The (controlled) marker property for topological actions

Theorem (Gutman 2012)

If X has finite covering dimension and ϕ : X → X is aperiodic, then ϕ
has the marker property.

Although the result is stated this way, careful reading of his proof yields
something stronger:
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The (controlled) marker property for topological actions

Theorem (Gutman 2012)

Let X have finite covering dimension d and let ϕ : X → X be an
aperiodic homeomorphism. For all n, there exists an n-marker
(i.e. a {0, . . . , n− 1}-marker) Z ⊂ X such that

X =

2(d+1)n−1⋃
j=0

ϕj(Z).

In particular, ϕ has the 2(d+ 1)-controlled marker property.
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The (controlled) marker property for topological actions

Corollary

For an aperiodic homeomorphism ϕ : X → X, we have

dimRok(ϕ) ≤ 2(dim(X) + 1)− 1

and
dimdyn(ϕ) ≤ 2(dim(X) + 1)2 − 1.

Proof. We prove just the first inequality. For any n, let us find an

n-marker Z such that X =
⋃2(d+1)n−1
j=0 ϕj(Z). If we set U

(l)
j = ϕln+j(Z)

for l = 0, . . . , 2(d+ 1)− 1 and j = 0, . . . , n− 1, we get a Rokhlin cover
with the desired properties.
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The (controlled) marker property for topological actions

This topological proof of finite Rokhlin dimension for aperiodic
homeomorphisms is much simpler than the C*-algebraic one.

Moreover, these methods do not crucially use the group structure of Z, so
this seems to be a good approach for more general group actions.

There is just one important technical obstacle that has to be tackled in
order for this approach to be sensible for groups 6= Z:

15 / 22



The (controlled) marker property for topological actions

This topological proof of finite Rokhlin dimension for aperiodic
homeomorphisms is much simpler than the C*-algebraic one.

Moreover, these methods do not crucially use the group structure of Z, so
this seems to be a good approach for more general group actions.

There is just one important technical obstacle that has to be tackled in
order for this approach to be sensible for groups 6= Z:

15 / 22



The (controlled) marker property for topological actions

This topological proof of finite Rokhlin dimension for aperiodic
homeomorphisms is much simpler than the C*-algebraic one.

Moreover, these methods do not crucially use the group structure of Z, so
this seems to be a good approach for more general group actions.

There is just one important technical obstacle that has to be tackled in
order for this approach to be sensible for groups 6= Z:

15 / 22



The (controlled) marker property for topological actions

Definition

Let G be a countably infinite group and α : Gy X a continuous group
action. Let M ⊂ G be a subset and k ∈ N be some natural number.

We say that a set E ⊂ X is (M,k)-disjoint, if for all distinct elements
γ(0), . . . , γ(k) ∈M we have

αγ(0)(E) ∩ · · · ∩ αγ(k)(E) = ∅.

We call E topologically G-small if E is (G, k)-disjoint for some k.

The system (X,α,G) is said to have the topological small boundary
property (TSBP), if X has a topological base consisting of open sets U
such that the boundaries ∂U are topologically G-small.
If we can arrange that the smallness constants are bounded by some
d ∈ N, we say that (X,α,G) has the bounded TSBP with respect to d.
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The (controlled) marker property for topological actions

Theorem (Lindenstrauss 1995)

If X has finite covering dimension d and ϕ : X → X is an aperiodic
homeomorphism, then the system (X,ϕ) has the bounded TSBP with
respect to d.

This property is at the heart of Gutman’s proof of the (controlled) marker
property of aperiodic homeomorphisms. In order to generalize Gutman’s
approach, one needs an analogous theorem in greater generality.
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New results

Indeed, the analogous theorem holds in much greater generality:

Theorem

Let X have finite covering dimension d and let G be a countably infinite
group that acts freely via α : Gy X.

Then the system (X,α,G) has the
bounded TSBP with respect to d.

As it turns out, this is really a crucial building block for the proof of the
following lemma, that is a generalization of Gutman’s result.
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New results

Lemma

Let X have finite covering dimension d and let G be a countably infinite
group that acts freely via α : Gy X.

Let F⊂⊂G a finite subset, and let
g1, . . . , gd ∈ G be elements such that

FF−1, g1FF
−1, . . . , gdFF

−1

are pairwise disjoint. Set M = FF−1∪̇g1FF
−1∪̇ . . . ∪̇gdFF−1.

Then there exists an F -marker Z such that X =
⋃
g∈M

αg(Z).
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New results

A consequence for G = Zm is:

Theorem

Let α : Zm y X be a free continuous action on a compact metric space of
finite covering dimension d. Then (X,α,Zm) has the 2m(d+ 1)-controlled
marker property.

Idea of the proof: (Bn −Bn) is contained in a translate of B2n. In Zm,
one needs at most 2m translates of Bn to cover B2n, hence also to cover
(Bn −Bn).
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New results

Similarly as in the case m = 1, it follows that:

Corollary

For a free continuous group action α : Zm y X, we have

dimRok(α) ≤ 2m(dim(X) + 1)− 1

and
dimdyn(α) ≤ 2m(dim(X) + 1)2 − 1.

Finally, we can combine this with the statements about the C*-algebraic
Rokhlin dimension to get:
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New results

Theorem

Let X be a compact metric space of finite covering dimension and let
α : Zm y X be a free continuous group action.

Then the induced
C*-algebraic action ᾱ on C(X) has finite Rokhlin dimension, and the
transformation group C*-algebra C(X) oᾱ Zm has finite nuclear
dimension. More specifically, we have

dimcyc
Rok(ᾱ) ≤ 22m(dim(X) + 1)− 1

and thus

dimnuc(C(X) oᾱ Zm) ≤ 23m(dim(X) + 1)2 − 1.

In particular, when α is assumed to be free and minimal, then
C(X) oᾱ Zm is Z-stable.
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