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Gábor Szabó
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A word of warning: This talk describes work in progress, and the proofs of
the results still need to be checked in detail. Do not quote them yet!
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Sequentially split ∗-homomorphisms

Definition

Let A and B be C∗-algebras and ϕ : A→ B a ∗-homomorphism.

ϕ is
called sequentially split, if there exists a ∗-homomorphism ψ : B → A∞
such that the composition ψ ◦ ϕ coincides with the standard embedding of
A into A∞. In other words, there exists a commutative diagram

A

ϕ ��

// A∞

B

==

of ∗-homomorphisms.

Remark

If one restricts to separable C∗-algebras, one gets an equivalent definition
upon replacing A∞ by Aω, for any free filter ω on N.
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Sequentially split ∗-homomorphisms

The motivation for studying this concept is that one frequently encounters
such a situation, at least implicitely, within many results or technical
proofs in the literature.

Theorem (Toms-Winter)

Let A be a separable C∗-algebra and let D be a strongly self-absorbing
C∗-algebra. Then A is D-stable if and only if the first factor embedding
idA⊗1D : A→ A⊗D is sequentially split.

We will see more examples later.
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Well-behavedness properties

This notion is well-behaved under some standard constructions.

Proposition

If the involved C∗-algebras are separable, then the composition of two
sequentially split ∗-homomorphisms is sequentially split.

Proposition

Let {An, κn} and {Bn, θn} be two inductive systems of separable
C∗-algebras. Let ϕn : An → Bn be a sequence of ∗-homomorphisms
compatible with the connecting maps, and denote by ϕ : lim

−→
An → lim

−→
Bn

the induced map on the limit C∗-algebras. If every ϕn is sequentially split,
then so is ϕ.
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Well-behavedness properties

Theorem

Let A and B be two C∗-algebras. Assume that ϕ : A→ B is a
sequentially split ∗-homomorphism. Then:

(I) For each ideal J of A, the restriction ϕ|J : J → Bϕ(J)B and the
induced map ϕmod J : A/J → B/Bϕ(J)B are sequentially split.

(II) The induced map between the ideal lattices IdLat(A)→ IdLat(B)
given by J 7→ Bϕ(J)B is injective.

(III) If ψ : C → D is another sequentially split ∗-homomorphism, then
ϕ⊗ ψ : A⊗max C → B ⊗max D is sequentially split.

(IV) The induced map between the Cuntz semigroups Cu(A)→ Cu(B)
given by 〈a〉A 7→ 〈ϕ(a)〉B is injective.

(V) The induced map on K-theory ϕ∗ : K∗(A)→ K∗(B) is injective.
The same is true for K-theory with coefficients Zn for all n ≥ 2.

(VI) The induced map between the simplices of tracial states
T (ϕ) : T (B)→ T (A) given by τ 7→ τ ◦ ϕ is surjective.
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Permanence properties

Theorem

Let A and B be two separable C∗-algebras. Assume that ϕ : A→ B is a
non-degenerate, sequentially split ∗-homomorphism. Then the following
properties pass from B to A:

(1) simplicity.

(2) nuclearity.

(3) having nuclear dimension at most r ∈ N.

(4) having decomposition rank at most r ∈ N.

(5) absorbing a given strongly self-absorbing C∗-algebra D.

(6) being isomorphic to a given strongly self-absorbing C∗-algebra D.

(7) being unital and approximately divisible.

(8) being purely infinite. (in the sense of Kirchberg and Rørdam)

(9) being unital, simple and having strict comparison of positive elements.
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Permanence properties

Theorem (continued)

(10) having real rank zero.

(11) having (almost) stable rank one.

(12) being locally approximated by a ’reasonable’ class C consisting of
weakly semiprojective C∗-algebras.

(13) being either UHF, AF, AI, AT or being expressible as an inductive
limit of 1-NCCW complexes.

(14) being simple, unital, nuclear and having tracial rank at most zero or
one. (in the sense of Lin)

(15) being simple, unital, nuclear and having generalized tracial rank at
most one. (in the sense of Gong-Lin-Niu)

(16) stability under tensoring with the compacts K.
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Permanence properties

Theorem

Let A and B be two separable C∗-algebras. Assume that ϕ : A→ B is a
sequentially split ∗-homomorphism. If B is nuclear and satisfies the UCT,
then so does A.

Remark

Out of all the permanence properties, the above is the furthest from being
trivial. A technique by Kirchberg makes it possible to reduce this to the
case of A and B being Kirchberg algebras. From then on, one needs to
use Kirchberg-Phillips classification paired with (weak) semiprojectivity
arguments.
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Some examples

Definition (Watatani)

Let B be a unital C∗-algebra and A ⊂ B a unital sub-C∗-algebra. Let
E : B → A be a conditional expectation. Then E is said to have a
quasi-basis, if there exist elements u1, v1, . . . , un, vn ∈ B such that

x =

n∑
j=1

ujE(vjx) =

n∑
j=1

E(xuj)vj for all x ∈ B.

In this case, one defines the Watatani Index of E as

ind(E) =
n∑
j=1

ujvj ∈ B.

If A ↪−→ B is some inclusion of unital C∗-algebras such that there exists a
conditional expectation E : B → A with a quasi-basis, one also says that
this inclusion has finite Watatani Index.
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j=1

ujvj ∈ B.

If A ↪−→ B is some inclusion of unital C∗-algebras such that there exists a
conditional expectation E : B → A with a quasi-basis, one also says that
this inclusion has finite Watatani Index.
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Some examples

Example

Let α be a finite group action on a separable, unital C∗-algebra A. Then
the inclusion Aα ↪−→ A has finite Watatani Index, with E being the
averaging map.

Theorem (Watatani)

If A ↪−→ B is an inclusion of unital C∗-algebras with finite Watatani-Index,
then there is a unique conditional expectation E : B → A. Moreover, its
index ind(E) is a positive, invertible, central element in B.

Definition (Osaka-Kodaka-Teruya)

Let B be a unital C∗-algebra and A ⊂ B a unital sub-C∗-algebra. Let
E : B → A be a conditional expectation and assume that the inclusion
A ↪−→ B has finite Watatani Index. This inclusion is said to have the
Rokhlin property, if there exists a projection p ∈ B∞ ∩B′ such that
E∞(p) = ind(E)−1.
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Some examples

Example (Osaka-Kodaka-Teruya)

Let α be a finite group action on a separable, unital, simple C∗-algebra A.
Then α has the Rokhlin property if and only if the inclusion Aα ↪−→ A has
the Rokhlin property.

Inclusions with the Rokhlin property enjoy the following permanence
properties:

Theorem (Osaka-Kodaka-Teruya, Osaka-Teruya)

Let A ↪−→ B be an inclusion of separable, unital C∗-algebras with the
Rokhlin property. Then the following properties pass from B to A:

being AF, AI, AT or being expressible as an inductive limit of
1-NCCW complexes.

having stable rank one

having real rank zero
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Some examples

Theorem (Osaka-Kodaka-Teruya, Osaka-Teruya - continued)

absorbing a given strongly self-absorbing C∗-algebra D.

having nuclear dimension at most r ∈ N.

having decomposition rank at most r ∈ N.

etc.

As it turns out, this result fits nicely into the setting of sequentially split
∗-homomorphisms.

Theorem

Let A ↪−→ B be an inclusion of separable, unital C∗-algebras with the
Rokhlin property. Then this inclusion map is sequentially split.

Paired with the permanence results of this talk, this observation recovers
and extends the permanence results proved by Osaka, Kodaka, Teruya.
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Some examples

Even outside the simple, unital case, finite group actions with the Rokhlin
property fit nicely into this picture:

Proposition

Let A be a separable C∗-algebra and let α : Gy A be a finite group
action with the Rokhlin property. Then the inclusions Aα ↪−→ A and
Aoα G ↪−→M|G|(A) are sequentially split.

Paired with the permanence results of this talk, this observation recovers
the known permanence properties of finite group actions with the Rokhlin
property, which are due to Osaka-Phillips and Santiago.

 More examples like this to come in the next talk.
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Thank you for your attention!
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