Sequentially split *-homomorphisms (Part II) Workshop on Structure and Classification of C*-algebras

Selçuk Barlak (joint with Gábor Szabó)

WWU Münster

April 2015

イロン イヨン イヨン イヨン 三日

1/19

A word of warning: This talk describes work in progress, and the proofs of the results still need to be checked in detail. Do not quote them yet!

2/19

Equivariantly sequentially split *-homomorphisms

1 Equivariantly sequentially split *-homomorphisms

2 Rokhlin actions

3 Extending Izumi's duality result

Definition

Let A be a C^{*}-algebra, G a group, $\alpha : G \curvearrowright A$ a (point-norm) continuous action and ω a free filter on \mathbb{N} .

Definition

Let A be a C^{*}-algebra, G a group, $\alpha : G \curvearrowright A$ a (point-norm) continuous action and ω a free filter on \mathbb{N} . Componentwise application of α yields a (possibly not continuous) action $\alpha_{\omega} : G \curvearrowright A_{\omega}$.

Definition

Let A be a C*-algebra, G a group, $\alpha : G \curvearrowright A$ a (point-norm) continuous action and ω a free filter on \mathbb{N} . Componentwise application of α yields a (possibly not continuous) action $\alpha_{\omega} : G \curvearrowright A_{\omega}$. We define

$$A_{\omega,\alpha} = \{x \in A_{\omega} \mid [g \mapsto \alpha_{\omega,g}(x)] \text{ is continuous}\}.$$

This yields a continuous action $\alpha_{\omega}: G \curvearrowright A_{\omega,\alpha}$.

Definition

Let A be a C*-algebra, G a group, $\alpha : G \curvearrowright A$ a (point-norm) continuous action and ω a free filter on \mathbb{N} . Componentwise application of α yields a (possibly not continuous) action $\alpha_{\omega} : G \curvearrowright A_{\omega}$. We define

$$A_{\omega,\alpha} = \{x \in A_{\omega} \mid [g \mapsto \alpha_{\omega,g}(x)] \text{ is continuous}\}.$$

This yields a continuous action $\alpha_{\omega}: G \frown A_{\omega,\alpha}$.

Definition

Let A and B be C*-algebras, G a group and $\alpha:G \curvearrowright A$ and $\beta:G \curvearrowright B$ continuous actions.

Definition

Let A be a C*-algebra, G a group, $\alpha : G \curvearrowright A$ a (point-norm) continuous action and ω a free filter on \mathbb{N} . Componentwise application of α yields a (possibly not continuous) action $\alpha_{\omega} : G \curvearrowright A_{\omega}$. We define

$$A_{\omega,\alpha} = \{x \in A_{\omega} \mid [g \mapsto \alpha_{\omega,g}(x)] \text{ is continuous} \}.$$

This yields a continuous action $\alpha_{\omega}: G \curvearrowright A_{\omega,\alpha}$.

Definition

Let A and B be C*-algebras, G a group and $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ continuous actions. An equivariant *-homomorphism $\varphi : (A, \alpha) \to (B, \beta)$ is called (equivariantly) sequentially split, if there exists an equivariant *-homomorphism $\psi : (B, \beta) \to (A_{\infty,\alpha}, \alpha_{\infty})$ such that the composition $\psi \circ \varphi$ coincides with the standard embedding of A into $A_{\infty,\alpha}$.

Definition (continued)

In other words, there exists a commutative diagram

of equivariant *-homomorphisms.

Definition (continued)

In other words, there exists a commutative diagram

of equivariant *-homomorphisms.

Remark

If one restricts to separable C*-algebras, one gets an equivalent definition upon replacing $(A_{\infty,\alpha}, \alpha_{\infty})$ by $(A_{\omega,\alpha}, \alpha_{\omega})$, for any free filter ω on \mathbb{N} .

Like its non-equivariant counterpart, this notion is well-behaved under some standard constructions.

Proposition

If the involved C^* -algebras are separable, then the composition of two equivariantly sequentially split *-homomorphisms is equivariantly sequentially split.

Like its non-equivariant counterpart, this notion is well-behaved under some standard constructions.

Proposition

If the involved C^* -algebras are separable, then the composition of two equivariantly sequentially split *-homomorphisms is equivariantly sequentially split.

Proposition

Let $\varphi:(A,\alpha)\to(B,\beta)$ and $\psi:(C,\gamma)\to(D,\delta)$ be two sequentially split *-homomorphisms. Then

$$\varphi \otimes \psi : (A \otimes_{\max} B, \alpha \otimes \beta) \to (C \otimes_{\max} D, \gamma \otimes \delta)$$

is sequentially split.

Like its non-equivariant counterpart, this notion is well-behaved under some standard constructions.

Proposition

If the involved C^* -algebras are separable, then the composition of two equivariantly sequentially split *-homomorphisms is equivariantly sequentially split.

Proposition

Let $\varphi:(A,\alpha)\to(B,\beta)$ and $\psi:(C,\gamma)\to(D,\delta)$ be two sequentially split *-homomorphisms. Then

$$\varphi \otimes \psi : (A \otimes_{\max} B, \alpha \otimes \beta) \to (C \otimes_{\max} D, \gamma \otimes \delta)$$

is sequentially split.

In analogy to the non-equivariant case, equivariantly sequentially split *-homomorphisms are also well-behaved with respect to equivariant inductive limits.

Let A and B be C*-algebras, G a group and $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ continuous actions. Assume that $\varphi : (A, \alpha) \to (B, \beta)$ is a sequentially split *-homomorphism. Then:

• The induced *-homomorphism $\varphi \rtimes G : A \rtimes_{\alpha} G \to B \rtimes_{\beta} G$ between the crossed products is sequentially split.

Let A and B be C*-algebras, G a group and $\alpha: G \curvearrowright A$ and $\beta: G \curvearrowright B$ continuous actions. Assume that $\varphi: (A, \alpha) \to (B, \beta)$ is a sequentially split *-homomorphism. Then:

- The induced *-homomorphism $\varphi \rtimes G : A \rtimes_{\alpha} G \to B \rtimes_{\beta} G$ between the crossed products is sequentially split.
- If G is compact, then the induced *-homomorphism $\varphi: A^{\alpha} \to B^{\beta}$ between the fixed point algebras is sequentially split.

Let A and B be C*-algebras, G a group and $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ continuous actions. Assume that $\varphi : (A, \alpha) \to (B, \beta)$ is a sequentially split *-homomorphism. Then:

- The induced *-homomorphism $\varphi \rtimes G : A \rtimes_{\alpha} G \to B \rtimes_{\beta} G$ between the crossed products is sequentially split.
- If G is compact, then the induced *-homomorphism $\varphi: A^{\alpha} \to B^{\beta}$ between the fixed point algebras is sequentially split.

One has the following Takai Duality-type result:

Let A and B be C*-algebras, G a group and $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ continuous actions. Assume that $\varphi : (A, \alpha) \rightarrow (B, \beta)$ is a sequentially split *-homomorphism. Then:

- The induced *-homomorphism $\varphi \rtimes G : A \rtimes_{\alpha} G \to B \rtimes_{\beta} G$ between the crossed products is sequentially split.
- If G is compact, then the induced *-homomorphism $\varphi: A^{\alpha} \to B^{\beta}$ between the fixed point algebras is sequentially split.

One has the following Takai Duality-type result:

Theorem

Let A and B be σ -unital C*-algebras, G an abelian group and $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ continuous actions. An equivariant *-homomorphism $\varphi : (A, \alpha) \to (B, \beta)$ is sequentially split if and only if the dual morphism $\hat{\varphi} : (A \rtimes_{\alpha} G, \hat{\alpha}) \to (B \rtimes_{\beta} G, \hat{\beta})$ is (\hat{G} -equivariantly) sequentially split.

Corollary

Let A and B be separable C*-algebras and let $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ be continuous actions. Assume that $\varphi : (A, \alpha) \to (B, \beta)$ is a non-degenerate, sequentially split *-homomorphism.

Corollary

Let A and B be separable C*-algebras and let $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ be continuous actions. Assume that $\varphi : (A, \alpha) \to (B, \beta)$ is a non-degenerate, sequentially split *-homomorphism. Then all the properties listed in the last talk pass from $B \rtimes_{\beta} G$ to $A \rtimes_{\alpha} G$.

Corollary

Let A and B be separable C^* -algebras and let $\alpha : G \curvearrowright A$ and $\beta : G \curvearrowright B$ be continuous actions. Assume that $\varphi : (A, \alpha) \to (B, \beta)$ is a non-degenerate, sequentially split *-homomorphism. Then all the properties listed in the last talk pass from $B \rtimes_{\beta} G$ to $A \rtimes_{\alpha} G$. If G is compact, then the same is true for the fixed point algebras B^{β} and A^{α} .

Equivariantly sequentially split *-homomorphisms

3 Extending Izumi's duality result

Let A be a $\mathrm{C}^*\mbox{-algebra}.$ The central sequence algebra of A is defined as the quotient

 $F_{\infty}(A) = A_{\infty} \cap A' / \{ x \in A_{\infty} \mid xA + Ax = 0 \}.$

Let A be a $\mathrm{C}^*\mbox{-algebra}.$ The central sequence algebra of A is defined as the quotient

$$F_{\infty}(A) = A_{\infty} \cap A' / \{ x \in A_{\infty} \mid xA + Ax = 0 \}.$$

Let G be a group and $\alpha : G \curvearrowright A$ a continuous action. α induces a (possibly not continuous) G-action α_{∞} on $F_{\infty}(A)$.

Let A be a $\mathrm{C}^*\mbox{-algebra}.$ The central sequence algebra of A is defined as the quotient

$$F_{\infty}(A) = A_{\infty} \cap A' / \left\{ x \in A_{\infty} \mid xA + Ax = 0 \right\}.$$

Let G be a group and $\alpha : G \curvearrowright A$ a continuous action. α induces a (possibly not continuous) G-action α_{∞} on $F_{\infty}(A)$. We define

 $F_{\infty,\alpha}(A) = \left\{ x \in F_{\infty}(A) \mid [g \mapsto \alpha_{\infty,g}(x)] \text{ is continuous} \right\}.$

This yields a continuous action $\alpha_{\infty}: G \curvearrowright F_{\infty,\alpha}(A)$.

Let A be a $\mathrm{C}^*\mbox{-algebra}.$ The central sequence algebra of A is defined as the quotient

$$F_{\infty}(A) = A_{\infty} \cap A' / \left\{ x \in A_{\infty} \mid xA + Ax = 0 \right\}.$$

Let G be a group and $\alpha : G \curvearrowright A$ a continuous action. α induces a (possibly not continuous) G-action α_{∞} on $F_{\infty}(A)$. We define

$$F_{\infty,\alpha}(A) = \left\{ x \in F_{\infty}(A) \ | \ [g \mapsto \alpha_{\infty,g}(x)] \text{ is continuous} \right\}.$$

This yields a continuous action $\alpha_{\infty}: G \curvearrowright F_{\infty,\alpha}(A)$.

Remark

If A is σ -unital, then $F_{\infty}(A)$ is unital. In this case, the unit is represented by any countable approximate unit for A.

Let A be a separable C*-algebra and G a compact group. A continuous action $\alpha : G \curvearrowright A$ is said to have the Rokhlin property, if there exists a unital and equivariant *-homomorphism

$$(\mathcal{C}(G), \sigma) \to (F_{\infty, \alpha}(A), \alpha_{\infty}),$$

where σ denotes the canonical G-shift.

Let A be a separable C*-algebra and G a compact group. A continuous action $\alpha : G \curvearrowright A$ is said to have the Rokhlin property, if there exists a unital and equivariant *-homomorphism

$$(\mathcal{C}(G), \sigma) \to (F_{\infty, \alpha}(A), \alpha_{\infty}),$$

where σ denotes the canonical G-shift.

We can characterize actions with the Rokhlin property in terms of equivariantly sequentially split *-homomorphisms:

Let A be a separable C*-algebra and G a compact group. A continuous action $\alpha : G \curvearrowright A$ is said to have the Rokhlin property, if there exists a unital and equivariant *-homomorphism

$$(\mathcal{C}(G), \sigma) \to (F_{\infty, \alpha}(A), \alpha_{\infty}),$$

where σ denotes the canonical G-shift.

We can characterize actions with the Rokhlin property in terms of equivariantly sequentially split *-homomorphisms:

Proposition

Let A be a separable $\mathrm{C}^*\text{-algebra},\,G$ a compact group and $\alpha:G \curvearrowright A$ a continuous action. Then α has the Rokhlin property if and only if

$$\mathrm{id}_A \otimes \mathbf{1} : (A, \alpha) \hookrightarrow (A \otimes \mathcal{C}(G), \alpha \otimes \sigma)$$

is sequentially split.

Theorem

Let A be a separable C*-algebra, G a compact group and $\alpha : G \curvearrowright A$ an action with the Rokhlin property. Then the natural inclusions $A^{\alpha} \hookrightarrow A$ and $A \rtimes_{\alpha} G \hookrightarrow A \otimes \mathcal{K}(L^2(G))$ are sequentially split.

Theorem

Let A be a separable C*-algebra, G a compact group and $\alpha : G \curvearrowright A$ an action with the Rokhlin property. Then the natural inclusions $A^{\alpha} \hookrightarrow A$ and $A \rtimes_{\alpha} G \hookrightarrow A \otimes \mathcal{K}(L^2(G))$ are sequentially split. In particular, all the properties listed in the last talk pass from A to A^{α} and from $A \otimes \mathcal{K}(L^2(G))$ to $A \rtimes_{\alpha} G$.

Theorem

Let A be a separable C*-algebra, G a compact group and $\alpha : G \curvearrowright A$ an action with the Rokhlin property. Then the natural inclusions $A^{\alpha} \hookrightarrow A$ and $A \rtimes_{\alpha} G \hookrightarrow A \otimes \mathcal{K}(L^2(G))$ are sequentially split. In particular, all the properties listed in the last talk pass from A to A^{α} and from $A \otimes \mathcal{K}(L^2(G))$ to $A \rtimes_{\alpha} G$.

Corollary

Let A be a separable, nuclear C*-algebra, G a compact group and $\alpha: G \curvearrowright A$ an action with the Rokhlin property. If A satisfies the UCT, then A^{α} and $A \rtimes_{\alpha} G$ also satisfy the UCT.

Equivariantly sequentially split *-homomorphisms

2 Rokhlin actions

3 Extending Izumi's duality result

Let A be a separable C^* -algebra and H a discrete group. An action $\alpha : H \curvearrowright A$ is called approximately representable, if there exist contractions $x_{n,h} \in A, n \in \mathbb{N}$ and $h \in H$, satisfying the following relations:

Let A be a separable C*-algebra and H a discrete group. An action $\alpha: H \curvearrowright A$ is called approximately representable, if there exist contractions $x_{n,h} \in A$, $n \in \mathbb{N}$ and $h \in H$, satisfying the following relations:

(1) For $h \in H$, $(x_{n,h}x_{n,h}^*)_n$ and $(x_{n,h}^*x_{n,h})_n$ are approximate units for A.

Let A be a separable C*-algebra and H a discrete group. An action $\alpha: H \curvearrowright A$ is called approximately representable, if there exist contractions $x_{n,h} \in A$, $n \in \mathbb{N}$ and $h \in H$, satisfying the following relations:

(1) For $h \in H$, $(x_{n,h}x_{n,h}^*)_n$ and $(x_{n,h}^*x_{n,h})_n$ are approximate units for A. (2) For all $g, h \in H$ and $a \in A$,

$$\lim_{n \to \infty} \|a(x_{n,g}x_{n,h} - x_{n,gh})\| + \|(x_{n,g}x_{n,h} - x_{n,gh})a\| = 0.$$

Let A be a separable C*-algebra and H a discrete group. An action $\alpha : H \curvearrowright A$ is called approximately representable, if there exist contractions $x_{n,h} \in A, n \in \mathbb{N}$ and $h \in H$, satisfying the following relations:

For h ∈ H, (x_{n,h}x^{*}_{n,h})_n and (x^{*}_{n,h}x_{n,h})_n are approximate units for A.
For all g, h ∈ H and a ∈ A,

$$\lim_{n \to \infty} \|a(x_{n,g}x_{n,h} - x_{n,gh})\| + \|(x_{n,g}x_{n,h} - x_{n,gh})a\| = 0.$$

(3) For all $a \in A$ and $h \in H$, $\lim_{n \to \infty} \|\alpha_h(a) - x_{n,h}ax_{n,h}^*\| = 0$,

Let A be a separable C^* -algebra and H a discrete group. An action $\alpha: H \curvearrowright A$ is called approximately representable, if there exist contractions $x_{n,h} \in A, n \in \mathbb{N}$ and $h \in H$, satisfying the following relations: (1) For $h \in H$, $(x_{n,h}x_{n,h}^*)_n$ and $(x_{n,h}^*x_{n,h})_n$ are approximate units for A. (2) For all $g, h \in H$ and $a \in A$, $\lim_{n \to \infty} \|a(x_{n,g}x_{n,h} - x_{n,gh})\| + \|(x_{n,g}x_{n,h} - x_{n,gh})a\| = 0.$ (3) For all $a \in A$ and $h \in H$, $\lim_{n \to \infty} \|\alpha_h(a) - x_{n,h}ax_{n,h}^*\| = 0$, (4) For all $q, h \in H$ and $a \in A$.

$$\lim_{n \to \infty} \|a(x_{n,ghg^{-1}} - \alpha_g(x_{n,h}))\| + \|(x_{n,ghg^{-1}} - \alpha_g(x_{n,h}))a\| = 0.$$

イロト 不得 とくほと くほとう ほ

15/19

Let A be a separable C*-algebra and H a discrete group. An action $\alpha : H \curvearrowright A$ is called approximately representable, if there exist contractions $x_{n,h} \in A, n \in \mathbb{N}$ and $h \in H$, satisfying the following relations: (1) For $h \in H$, $(x_{n,h}x_{n,h}^*)_n$ and $(x_{n,h}^*x_{n,h})_n$ are approximate units for A. (2) For all $g, h \in H$ and $a \in A$, $\lim_{n \to \infty} \|a(x_{n,g}x_{n,h} - x_{n,gh})\| + \|(x_{n,g}x_{n,h} - x_{n,gh})a\| = 0.$

(3) For all $a \in A$ and $h \in H$, $\lim_{n \to \infty} \|\alpha_h(a) - x_{n,h}ax_{n,h}^*\| = 0$, (4) For all $g, h \in H$ and $a \in A$.

$$\lim_{n \to \infty} \|a(x_{n,ghg^{-1}} - \alpha_g(x_{n,h}))\| + \|(x_{n,ghg^{-1}} - \alpha_g(x_{n,h}))a\| = 0.$$

Remark

In the unital case, one recovers the usual definition by Izumi.

Like the Rokhlin property, approximate representability can be characterized in terms of sequentially split *-homomorphisms.

Like the Rokhlin property, approximate representability can be characterized in terms of sequentially split *-homomorphisms.

Proposition

Let A be a separable C*-algebra, H a discrete group and $\alpha: H \curvearrowright A$ an action. Then α is approximately representable if and only if

$$\iota_A: (A,\alpha) \longleftrightarrow (A \rtimes_{\alpha} H, \mathrm{Ad}(\lambda^{\alpha}))$$

is sequentially split.

Here $\lambda^{\alpha}: H \to \mathcal{U}(\mathcal{M}(A \rtimes_{\alpha} H))$ denotes the canonical unitary represention implementing α .

Recall Izumi's duality result concerning the Rokhlin property and approximate representability for finite abelian group actions on unital, separable C^* -algebras:

Recall Izumi's duality result concerning the Rokhlin property and approximate representability for finite abelian group actions on unital, separable C^* -algebras:

Theorem (Izumi '04)

Let A be a unital, separable C*-algebra, G a finite abelian group and $\alpha: G \curvearrowright A$ an action. Then

(1) α has the Rokhlin property if and only if $\hat{\alpha}$ is approximately representable,

Recall Izumi's duality result concerning the Rokhlin property and approximate representability for finite abelian group actions on unital, separable C^* -algebras:

Theorem (Izumi '04)

Let A be a unital, separable C*-algebra, G a finite abelian group and $\alpha: G \curvearrowright A$ an action. Then

- (1) α has the Rokhlin property if and only if $\hat{\alpha}$ is approximately representable,
- (2) α is approximately representable if and only if $\hat{\alpha}$ has the Rokhlin property.

Using the above characterization of approximate representability and the Takai Duality-type result for equivariantly sequentially split *-homomorphisms, we can extend Izumi's result as follows.

Using the above characterization of approximate representability and the Takai Duality-type result for equivariantly sequentially split *-homomorphisms, we can extend Izumi's result as follows.

Theorem

Let A be a separable C*-algebra, G a compact, abelian group and H a discrete, abelian group. Let $\alpha : G \curvearrowright A$ and $\beta : H \curvearrowright A$ be two continuous actions. Then

(1) α has the Rokhlin property if and only if $\hat{\alpha}$ is approximately representable,

Using the above characterization of approximate representability and the Takai Duality-type result for equivariantly sequentially split *-homomorphisms, we can extend Izumi's result as follows.

Theorem

Let A be a separable C*-algebra, G a compact, abelian group and H a discrete, abelian group. Let $\alpha : G \curvearrowright A$ and $\beta : H \curvearrowright A$ be two continuous actions. Then

- (1) α has the Rokhlin property if and only if $\hat{\alpha}$ is approximately representable,
- (2) β is approximately representable if and only if $\hat{\beta}$ has the Rokhlin property.

Thank you for your attention!

19/19