$\label{eq:classification} \begin{array}{l} \mbox{Strongly self-absorbing C^*-dynamical systems} \\ \mbox{Classification and dynamical systems $I: C^*-algebras} \\ \mbox{Mittag-Leffler institute, Stockholm} \end{array}$

Gábor Szabó

WWU Münster

February 2016

イロン 不得 とうほう イロン 二日

1/24

- 2 Strongly self-absorbing actions
- ③ Permanence properties

Background & Motivation

- 2 Strongly self-absorbing actions
- 3 Permanence properties

④ Examples and an application

<□> <圕> <필> < 필> < 필> < 필> < 필 > ④ Q (3/24

One of these regularity properties concerns the tensorial absorption of some strongly self-absorbing C^* -algebra \mathcal{D} .

One of these regularity properties concerns the tensorial absorption of some strongly self-absorbing C^* -algebra \mathcal{D} .

Already in Kirchberg-Phillips' classification of purely infinite C*-algebras, the Cuntz algebra \mathcal{O}_{∞} played this role. Together with \mathcal{O}_2 , these two objects are the cornerstones of that classification.

One of these regularity properties concerns the tensorial absorption of some strongly self-absorbing C^* -algebra \mathcal{D} .

Already in Kirchberg-Phillips' classification of purely infinite C*-algebras, the Cuntz algebra \mathcal{O}_{∞} played this role. Together with \mathcal{O}_2 , these two objects are the cornerstones of that classification.

In a very influential paper, the term of 'localizing the Elliott conjecture at a strongly self-absorbing C^* -algebra \mathcal{D} ' was coined by Winter. The most general case concerns $\mathcal{D} = \mathcal{Z}$.

With the unital Elliott classification program approaching its conclusion, it can be inspiring to have a look at a fascinating string of results in the theory of von Neumann algebras, which initially paralleled and then followed the classification of injective factors:

With the unital Elliott classification program approaching its conclusion, it can be inspiring to have a look at a fascinating string of results in the theory of von Neumann algebras, which initially paralleled and then followed the classification of injective factors:

Theorem (Connes, Jones, Ocneanu, Sutherland-Takesaki, Kawahigashi-Sutherland-Takesaki, Katayama-Sutherland-Takesaki)

Let M be an injective factor and G a discrete amenable group. Then two pointwise outer G-actions on M are cocycle conjugugate by an approximately inner automorphism if and only if they agree on the Connes-Takesaki module. With the unital Elliott classification program approaching its conclusion, it can be inspiring to have a look at a fascinating string of results in the theory of von Neumann algebras, which initially paralleled and then followed the classification of injective factors:

Theorem (Connes, Jones, Ocneanu, Sutherland-Takesaki, Kawahigashi-Sutherland-Takesaki, Katayama-Sutherland-Takesaki)

Let M be an injective factor and G a discrete amenable group. Then two pointwise outer G-actions on M are cocycle conjugugate by an approximately inner automorphism if and only if they agree on the Connes-Takesaki module.

More recently, Masuda has found a unified approach for McDuff-factors based on Evans-Kishimoto intertwining. Moreover, there exist also many convincing results of this spirit beyond the discrete group case.

Can we classify C^* -dynamical systems?

Can we classify C^* -dynamical systems?

In general, this is completely out of reach. In contrast to von Neumann algebras, there are major obstructions coming from K-theory.

Can we classify C*-dynamical systems?

In general, this is completely out of reach. In contrast to von Neumann algebras, there are major obstructions coming from K-theory.

Nevertheless, many people have invented novel approaches to make progress on this question.

Can we classify C*-dynamical systems?

In general, this is completely out of reach. In contrast to von Neumann algebras, there are major obstructions coming from K-theory.

Nevertheless, many people have invented novel approaches to make progress on this question. A bit of name-dropping: Herman, Jones, Ocneanu, Evans, Kishimoto, Elliott, Bratteli, Robinson, Izumi, Phillips, Nakamura, Lin, Katsura, Gardella, Santiago, **Matui**, **Sato...(impressive!)**

Can we classify C*-dynamical systems?

In general, this is completely out of reach. In contrast to von Neumann algebras, there are major obstructions coming from K-theory.

Nevertheless, many people have invented novel approaches to make progress on this question. A bit of name-dropping: Herman, Jones, Ocneanu, Evans, Kishimoto, Elliott, Bratteli, Robinson, Izumi, Phillips, Nakamura, Lin, Katsura, Gardella, Santiago, **Matui**, **Sato...(impressive!)**

Motivated by the importance of strongly self-absorbing $\mathrm{C}^*\text{-}\mathsf{algebras}$ in the Elliott program, we ask:

Question

- Is there a dynamical analogue of a strongly self-absorbing C*-algebra?
- $\bullet\,$ Can we classify $\mathrm{C}^*\text{-dynamical}$ systems that absorb such objects?

2 Strongly self-absorbing actions

3 Permanence properties

From now, let G always denote a second-countable, locally compact group.

Definition

Let $\alpha: G \curvearrowright A$ and $\beta: G \curvearrowright B$ denote actions on separable, unital C*-algebras. Let $\varphi_1, \varphi_2: (A, \alpha) \to (B, \beta)$ be two equivariant and unital *-homomorphisms. We say that φ_1 and φ_2 are approximately *G*-unitarily equivalent, denoted $\varphi_1 \approx_{\mathrm{u},G} \varphi_2$, if there is a sequence of unitaries $v_n \in B$ with

$$\operatorname{Ad}(v_n) \circ \varphi_1 \xrightarrow{n \to \infty} \varphi_2$$
 (in point-norm)

and

$$\max_{g \in K} \|\beta_g(v_n) - v_n\| \stackrel{n \to \infty}{\longrightarrow} 0$$

イロト 不得 トイヨト イヨト

8/24

for every compact set $K \subset G$.

Definition

Let \mathcal{D} be a separable, unital C*-algebra and $\gamma : G \curvearrowright \mathcal{D}$ an action. We say that γ is strongly self-absorbing, if the equivariant first-factor embedding

$$\mathrm{id}_{\mathcal{D}}\otimes \mathbf{1}_{\mathcal{D}}: (\mathcal{D},\gamma) \to (\mathcal{D}\otimes \mathcal{D},\gamma\otimes\gamma)$$

is approximately G-unitarily equivalent to an isomorphism.

Definition

Let \mathcal{D} be a separable, unital C*-algebra and $\gamma : G \curvearrowright \mathcal{D}$ an action. We say that γ is strongly self-absorbing, if the equivariant first-factor embedding

$$\mathrm{id}_{\mathcal{D}}\otimes \mathbf{1}_{\mathcal{D}}: (\mathcal{D},\gamma) \to (\mathcal{D}\otimes \mathcal{D},\gamma\otimes\gamma)$$

is approximately G-unitarily equivalent to an isomorphism.

We recover Toms-Winter's definition of a strongly self-absorbing C^* -algebra by inserting G as the trivial group. Moreover, any \mathcal{D} above must be strongly self-absorbing to begin with.

Definition

Let \mathcal{D} be a separable, unital C*-algebra and $\gamma : G \curvearrowright \mathcal{D}$ an action. We say that γ is strongly self-absorbing, if the equivariant first-factor embedding

$$\mathrm{id}_{\mathcal{D}}\otimes \mathbf{1}_{\mathcal{D}}: (\mathcal{D},\gamma) \to (\mathcal{D}\otimes \mathcal{D},\gamma\otimes\gamma)$$

is approximately G-unitarily equivalent to an isomorphism.

We recover Toms-Winter's definition of a strongly self-absorbing C^* -algebra by inserting G as the trivial group. Moreover, any \mathcal{D} above must be strongly self-absorbing to begin with.

Probably the single most important feature of strongly self-absorbing C^* -algebras is that they allow for a McDuff-type theorem that characterizes when some C^* -algebra absorbs them tensorially.

Let us recall:

Definition (Kirchberg, up to small notational difference)

Let A be a $\mathrm{C}^*\text{-}\mathrm{algebra}$ and ω a free filter on $\mathbb{N}.$ Recall that

$$A_{\omega} = \ell^{\infty}(\mathbb{N}, A) / \left\{ (x_n)_n \mid \lim_{n \to \omega} \|x_n\| = 0 \right\}.$$

Consider

$$A_{\omega} \cap A' = \{x \in A_{\omega} \mid [x, A] = 0\}$$

and

$$\operatorname{Ann}(A, A_{\omega}) = \left\{ x \in A_{\omega} \mid xA = Ax = 0 \right\}.$$

Notice that $Ann(A, A_{\omega}) \subset A_{\omega} \cap A'$ is an ideal, and one defines

$$F_{\omega}(A) = A_{\omega} \cap A' / \operatorname{Ann}(A, A_{\omega}).$$

Remark

If A is σ -unital, then $F_{\omega}(A)$ is unital. Overall, the assignment $A \mapsto F_{\omega}(A)$ is more well-behaved than $A \mapsto A_{\omega} \cap A'$ or $A \mapsto \mathcal{M}(A)_{\omega} \cap A'$.

Remark

If A is σ -unital, then $F_{\omega}(A)$ is unital. Overall, the assignment $A \mapsto F_{\omega}(A)$ is more well-behaved than $A \mapsto A_{\omega} \cap A'$ or $A \mapsto \mathcal{M}(A)_{\omega} \cap A'$.

Remark

If $\alpha : G \curvearrowright A$ is an action, then componentwise application of α on representing sequences yields actions $\alpha_{\omega} : G \curvearrowright A_{\omega}$ and $\tilde{\alpha}_{\omega} : G \curvearrowright F_{\omega}(A)$. The following equivariant McDuff-type theorem holds for strongly self-absorbing actions:

Theorem (generalizing Rørdam, Toms-Winter, Kirchberg)

Let $\alpha : G \curvearrowright A$ be an action on a separable C^* -algebra. Let $\gamma : G \curvearrowright \mathcal{D}$ be a strongly self-absorbing action. The following are equivalent:

- (1) α is cocycle conjugate to $\alpha \otimes \gamma$. ($\alpha \simeq_{cc} \alpha \otimes \gamma$)
- (2) There exists an equivariant and unital *-homomorphism from (D, γ) to (F_ω(A), α̃_ω).
- (3) There exists an equivariant *-homomorphism

 $\psi: (A \otimes \mathcal{D}, \alpha \otimes \gamma) \to (A_{\omega}, \alpha_{\omega})$

such that $\psi(a \otimes \mathbf{1}) = a$ for all $a \in A$.

The following equivariant McDuff-type theorem holds for strongly self-absorbing actions:

Theorem (generalizing Rørdam, Toms-Winter, Kirchberg)

Let $\alpha : G \curvearrowright A$ be an action on a separable C^* -algebra. Let $\gamma : G \curvearrowright \mathcal{D}$ be a strongly self-absorbing action. The following are equivalent:

- (1) α is cocycle conjugate to $\alpha \otimes \gamma$. ($\alpha \simeq_{cc} \alpha \otimes \gamma$)
- (2) There exists an equivariant and unital *-homomorphism from (D, γ) to (F_ω(A), α̃_ω).
- (3) There exists an equivariant *-homomorphism

 $\psi: (A \otimes \mathcal{D}, \alpha \otimes \gamma) \to (A_{\omega}, \alpha_{\omega})$

such that $\psi(a \otimes \mathbf{1}) = a$ for all $a \in A$.

The above result also holds for cocycle actions $(\alpha, u) : G \curvearrowright A$. Moreover, cocycle conjugacy **cannot** be strengthened to conjugacy above.

Background & Motivation

2 Strongly self-absorbing actions

Given a strongly self-absorbing C*-algebra \mathcal{D} , it has been shown by Toms-Winter that \mathcal{D} -stability is a property that is closed under various natural C*-algebraic constructions.

Given a strongly self-absorbing C^* -algebra \mathcal{D} , it has been shown by Toms-Winter that \mathcal{D} -stability is a property that is closed under various natural C^* -algebraic constructions.

This turns out to generalize to the equivariant situation:

Theorem (generalizing Toms-Winter)

Let $\alpha : G \curvearrowright A$ be an action on a separable C^* -algebra and $\gamma : G \curvearrowright \mathcal{D}$ a strongly self-absorbing action. Assume $\alpha \simeq_{cc} \alpha \otimes \gamma$. Then:

(1) If $E \subset A$ is hereditary and α -invariant, then $\alpha|_E \simeq_{cc} \alpha|_E \otimes \gamma$;

(2) If $J \subset A$ is an α -invariant ideal, then $\alpha^{\text{mod}J} \simeq_{\text{cc}} \alpha^{\text{mod}J} \otimes \gamma$;

- (3) If $\beta: G \curvearrowright B$ and $\delta_i: G \curvearrowright \mathcal{K}$ for i = 1, 2 are actions with
 - $\beta \otimes \delta_1 \simeq_{\mathrm{cc}} \alpha \otimes \delta_2$, then $\beta \simeq_{\mathrm{cc}} \beta \otimes \gamma$.

Theorem (generalizing Toms-Winter)

Let $\gamma: G \curvearrowright \mathcal{D}$ be a strongly self-absorbing action. If a separable C^* -dynamical system (A, α) arises as an equivariant inductive limit of C^* -dynamical systems $(A^{(n)}, \alpha^{(n)})$ with $\alpha^{(n)} \simeq_{cc} \alpha^{(n)} \otimes \gamma$, then $\alpha \simeq_{cc} \alpha \otimes \gamma$.

Theorem (generalizing Toms-Winter)

Let $\gamma: G \curvearrowright \mathcal{D}$ be a strongly self-absorbing action. If a separable C^* -dynamical system (A, α) arises as an equivariant inductive limit of C^* -dynamical systems $(A^{(n)}, \alpha^{(n)})$ with $\alpha^{(n)} \simeq_{cc} \alpha^{(n)} \otimes \gamma$, then $\alpha \simeq_{cc} \alpha \otimes \gamma$.

Similar as in Toms-Winter's work, the permanence properties so far are not very hard to prove by using the McDuff-type characterization of γ -absorption. Permanence under extensions, however, is much more challenging.

Theorem (generalizing Toms-Winter)

Let $\gamma: G \curvearrowright \mathcal{D}$ be a strongly self-absorbing action. If a separable C^* -dynamical system (A, α) arises as an equivariant inductive limit of C^* -dynamical systems $(A^{(n)}, \alpha^{(n)})$ with $\alpha^{(n)} \simeq_{cc} \alpha^{(n)} \otimes \gamma$, then $\alpha \simeq_{cc} \alpha \otimes \gamma$.

Similar as in Toms-Winter's work, the permanence properties so far are not very hard to prove by using the McDuff-type characterization of γ -absorption. Permanence under extensions, however, is much more challenging.

In the classical setting, a key ingredient in the proof is the fact that unitary commutators are always 1-homotopic in a strongly self-absorbing C^* -algebra. We shall discuss an equivariant replacement of this property.

Notation

Let $\alpha: G \curvearrowright A$ an action. Given $\varepsilon > 0$ and a compact set $K \subset G$, we consider the (K, ε) -approximately fixed elements

$$A_{\varepsilon,K}^{\alpha} = \left\{ x \in A \mid \max_{g \in K} \|\alpha_g(x) - x\| \le \varepsilon \right\}.$$

If A is unital, define

$$\mathcal{U}(A^{\alpha}_{\varepsilon,K}) = A^{\alpha}_{\varepsilon,K} \cap \mathcal{U}(A)$$

and

$$\mathcal{U}_0(A_{\varepsilon,K}^{\alpha}) = \left\{ u \mid \exists \ v : [0,1] \stackrel{\mathsf{cont}}{\longrightarrow} \mathcal{U}(A_{\varepsilon,K}^{\alpha}) : v(0) = \mathbf{1}, v(1) = u \right\}.$$

Notation

Let $\alpha: G \curvearrowright A$ an action. Given $\varepsilon > 0$ and a compact set $K \subset G$, we consider the (K, ε) -approximately fixed elements

$$A_{\varepsilon,K}^{\alpha} = \left\{ x \in A \mid \max_{g \in K} \|\alpha_g(x) - x\| \le \varepsilon \right\}.$$

If A is unital, define

$$\mathcal{U}(A^{\alpha}_{\varepsilon,K}) = A^{\alpha}_{\varepsilon,K} \cap \mathcal{U}(A)$$

and

$$\mathcal{U}_0(A^{\alpha}_{\varepsilon,K}) = \left\{ u \mid \exists \ v : [0,1] \xrightarrow{\mathsf{cont}} \mathcal{U}(A^{\alpha}_{\varepsilon,K}) : v(0) = \mathbf{1}, v(1) = u \right\}$$

Definition

We call an action $\alpha : G \curvearrowright A$ on a unital C^{*}-algebra unitarily regular, if for every $\varepsilon > 0$ and compact set $K \subset G$, there exists $\delta > 0$ such that

 $\text{for every } u,v\in\mathcal{U}(A^{\alpha}_{\delta,K}), \text{ we have } \quad uvu^*v^*\in\mathcal{U}_0(A^{\alpha}_{\varepsilon,K}).$

Any action $\alpha : G \curvearrowright A$ with $\alpha \simeq_{cc} \alpha \otimes id_{\mathcal{Z}}$ is unitarily regular.

Any action $\alpha : G \curvearrowright A$ with $\alpha \simeq_{cc} \alpha \otimes id_{\mathcal{Z}}$ is unitarily regular.

Theorem (generalizing Dadarlat-Winter)

Let $\gamma: G \curvearrowright \mathcal{D}$ be a unitarily regular, strongly self-absorbing action. Let $\alpha: G \curvearrowright A$ be an action on a unital C^{*}-algebra with $\alpha \simeq_{cc} \alpha \otimes \gamma$. Then any two equivariant and unital *-homomorphisms $\varphi_1, \varphi_2: (\mathcal{D}, \gamma) \to (A, \alpha)$ are strongly asymptotically G-unitarily equivalent; this means:

Any action $\alpha : G \curvearrowright A$ with $\alpha \simeq_{cc} \alpha \otimes id_{\mathcal{Z}}$ is unitarily regular.

Theorem (generalizing Dadarlat-Winter)

Let $\gamma: G \curvearrowright \mathcal{D}$ be a unitarily regular, strongly self-absorbing action. Let $\alpha: G \curvearrowright A$ be an action on a unital C*-algebra with $\alpha \simeq_{\rm cc} \alpha \otimes \gamma$. Then any two equivariant and unital *-homomorphisms $\varphi_1, \varphi_2: (\mathcal{D}, \gamma) \to (A, \alpha)$ are strongly asymptotically G-unitarily equivalent; this means: For every $\varepsilon_0 > 0$ and compact set $K_0 \subset G$, there is a continuous path $w: [0, \infty) \to \mathcal{U}(A)$ satisfying

$$w_0 = 1; \quad \varphi_2 = \lim_{t \to \infty} \operatorname{Ad}(w_t) \circ \varphi_1 \quad \text{(point-norm)};$$

 $\max_{g \in K} \|\alpha_g(w_t) - w_t\| \xrightarrow{t \to \infty} 0 \quad \text{for every compact set } K \subset G;$

$$\sup_{t \ge 0} \max_{g \in K_0} \|\alpha_g(w_t) - w_t\| \le \varepsilon_0.$$

Permanence under extensions can then be characterized as follows:

Theorem (generalizing Toms-Winter, Kirchberg)

Let $\gamma: G \curvearrowright \mathcal{D}$ be a strongly self-absorbing action. The following are equivalent:

- (1) The class of all separable, γ -absorbing G-C*-dynamical systems is closed under extensions.
- (2) γ is unitarily regular.
- (3) γ has strongly asymptotically G-inner half-flip.
- (4) The action $\gamma \star \gamma : G \curvearrowright \mathcal{D} \star \mathcal{D}$ induced on the join is γ -absorbing.

Reminder: $\mathcal{D} \star \mathcal{D} = \{ f \in \mathcal{C}([0,1], \mathcal{D} \otimes \mathcal{D}) \mid f(0) \in \mathcal{D} \otimes \mathbf{1}, f(1) \in \mathbf{1} \otimes \mathcal{D} \}$

Permanence under extensions can then be characterized as follows:

Theorem (generalizing Toms-Winter, Kirchberg)

Let $\gamma: G \curvearrowright \mathcal{D}$ be a strongly self-absorbing action. The following are equivalent:

- (1) The class of all separable, γ -absorbing G-C*-dynamical systems is closed under extensions.
- (2) γ is unitarily regular.
- (3) γ has strongly asymptotically G-inner half-flip.
- (4) The action $\gamma \star \gamma : G \curvearrowright \mathcal{D} \star \mathcal{D}$ induced on the join is γ -absorbing.

Reminder: $\mathcal{D} \star \mathcal{D} = \{ f \in \mathcal{C}([0,1], \mathcal{D} \otimes \mathcal{D}) \mid f(0) \in \mathcal{D} \otimes \mathbf{1}, f(1) \in \mathbf{1} \otimes \mathcal{D} \}$

Question

Is every strongly self-absorbing action unitarily regular?

Background & Motivation

2 Strongly self-absorbing actions

3 Permanence properties

The trivial G-action on a strongly self-absorbing C^* -algebra \mathcal{D} .

The trivial G-action on a strongly self-absorbing C^* -algebra \mathcal{D} .

Although this appears uninteresting at first, the equivariant McDuff-type theorem for these actions is a useful tool to verify that certain crossed product C^* -algebras are \mathcal{D} -stable.

The trivial G-action on a strongly self-absorbing C^* -algebra \mathcal{D} .

Although this appears uninteresting at first, the equivariant McDuff-type theorem for these actions is a useful tool to verify that certain crossed product C^* -algebras are \mathcal{D} -stable.

Example

Let D be a separable, unital $\mathrm{C}^*\text{-algebra}$ with approximately inner flip. Let $u:G\to \mathcal{U}(D)$ be a continuous unitary representation. Then

$$\bigotimes_{\mathbb{N}} \operatorname{Ad}(u) : G \frown \bigotimes_{\mathbb{N}} D$$

is strongly self-absorbing.

The trivial G-action on a strongly self-absorbing C^* -algebra \mathcal{D} .

Although this appears uninteresting at first, the equivariant McDuff-type theorem for these actions is a useful tool to verify that certain crossed product C^* -algebras are \mathcal{D} -stable.

Example

Let D be a separable, unital $\mathrm{C}^*\text{-algebra}$ with approximately inner flip. Let $u:G\to \mathcal{U}(D)$ be a continuous unitary representation. Then

$$\bigotimes_{\mathbb{N}} \operatorname{Ad}(u) : G \frown \bigotimes_{\mathbb{N}} D$$

is strongly self-absorbing.

This seemingly harmless construction implies the existence of faithful, strongly self-absorbing actions of many groups on various strongly self-absorbing C^* -algebras.

Example

The action

$$\gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad} \begin{pmatrix} 1 & 0 \\ 0 & z \end{pmatrix} : \mathbb{T} \frown \bigotimes_{\mathbb{N}} M_2 = M_{2^{\infty}}$$

is faithful, strongly self-absorbing, but one does **not** have $\gamma \simeq_{cc} \gamma \otimes id_{\mathcal{Z}}$.

Example

The action

$$\gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad} \left(\begin{array}{cc} 1 & 0 \\ 0 & z \end{array} \right) : \mathbb{T} \frown \bigotimes_{\mathbb{N}} M_2 = M_{2^{\infty}}$$

is faithful, strongly self-absorbing, but one does **not** have $\gamma \simeq_{cc} \gamma \otimes id_{\mathcal{Z}}$. However, γ is unitarily regular.

Example

The action

$$\gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad} \left(\begin{array}{cc} 1 & 0 \\ 0 & z \end{array} \right) : \mathbb{T} \frown \bigotimes_{\mathbb{N}} M_2 = M_{2^{\infty}}$$

is faithful, strongly self-absorbing, but one does **not** have $\gamma \simeq_{cc} \gamma \otimes id_{\mathcal{Z}}$. However, γ is unitarily regular.

Next, we shall consider interesting model actions on Kirchberg algebras.

Example

Let G be discrete and exact. By Kirchberg's \mathcal{O}_2 -embedding theorem, we find a faithful unitary representation $v: G \to \mathcal{U}(\mathcal{O}_2)$. (via $C_r^*(G) \subset \mathcal{O}_2$) Choose some embedding $\iota: \mathcal{O}_2 \to \mathcal{O}_\infty$, and obtain $u: G \to \mathcal{U}(\mathcal{O}_\infty)$ via $u_g = \iota(v_g) + \mathbf{1} - \iota(\mathbf{1}).$

Consider

$$\delta = \bigotimes_{\mathbb{N}} \operatorname{Ad}(v) : G \frown \mathcal{O}_2 \quad \text{and} \quad \gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad}(u) : G \frown \mathcal{O}_{\infty}.$$

Then both actions are pointwise outer and strongly self-absorbing.

Consider

$$\delta = \bigotimes_{\mathbb{N}} \operatorname{Ad}(v) : G \frown \mathcal{O}_2 \quad \text{and} \quad \gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad}(u) : G \frown \mathcal{O}_{\infty}.$$

Then both actions are pointwise outer and strongly self-absorbing.

Theorem (Izumi, Goldstein-Izumi)

Let G be finite and $\alpha : G \curvearrowright A$ an action on a unital Kirchberg algebra.

- (1) $\alpha \otimes \delta$ is conjugate to δ .
- (2) if α is pointwise outer, then $\alpha \otimes id_{\mathcal{O}_2}$ is conjugate to δ .
- (3) if α is pointwise outer, then $\alpha \otimes \gamma$ is conjugate to α .

Consider

$$\delta = \bigotimes_{\mathbb{N}} \operatorname{Ad}(v) : G \curvearrowright \mathcal{O}_2 \quad \text{and} \quad \gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad}(u) : G \curvearrowright \mathcal{O}_{\infty}.$$

Then both actions are pointwise outer and strongly self-absorbing.

Theorem (Izumi, Goldstein-Izumi)

Let G be finite and $\alpha : G \curvearrowright A$ an action on a unital Kirchberg algebra.

- (1) $\alpha \otimes \delta$ is conjugate to δ .
- (2) if α is pointwise outer, then $\alpha \otimes id_{\mathcal{O}_2}$ is conjugate to δ .
- (3) if α is pointwise outer, then $\alpha \otimes \gamma$ is conjugate to α .

Remark

In ongoing work of Phillips on finite group actions on unital Kirchberg algebras, these actions are relevant.

Consider

$$\delta = \bigotimes_{\mathbb{N}} \operatorname{Ad}(v) : G \curvearrowright \mathcal{O}_2 \quad \text{and} \quad \gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad}(u) : G \curvearrowright \mathcal{O}_\infty.$$

Theorem (S)

Let G be discrete, amenable and $\alpha : G \curvearrowright A$ an action on a unital Kirchberg algebra. Then:

(1)
$$\alpha \otimes \delta \simeq_{\rm cc} \delta$$
.

(2) if α is pointwise outer, then $\alpha \otimes id_{\mathcal{O}_2} \simeq_{cc} \delta$.

(3) if α is pointwise outer, then $\alpha \otimes \gamma \simeq_{cc} \alpha$. (G r.f. $\Rightarrow \dim_{Rok}(\alpha) \leq 1$.)

(4) $\alpha \otimes \operatorname{id}_{\mathcal{O}_{\infty}} \simeq_{\operatorname{cc}} \alpha$.

Consider

$$\delta = \bigotimes_{\mathbb{N}} \operatorname{Ad}(v) : G \curvearrowright \mathcal{O}_2 \quad \text{and} \quad \gamma = \bigotimes_{\mathbb{N}} \operatorname{Ad}(u) : G \curvearrowright \mathcal{O}_\infty.$$

Theorem (S)

Let G be discrete, amenable and $\alpha : G \curvearrowright A$ an action on a unital Kirchberg algebra. Then:

(1)
$$\alpha \otimes \delta \simeq_{\rm cc} \delta$$
.

- (2) if α is pointwise outer, then $\alpha \otimes id_{\mathcal{O}_2} \simeq_{cc} \delta$.
- (3) if α is pointwise outer, then $\alpha \otimes \gamma \simeq_{cc} \alpha$. (G r.f. $\Rightarrow \dim_{Rok}(\alpha) \leq 1$.)

(4) $\alpha \otimes \operatorname{id}_{\mathcal{O}_{\infty}} \simeq_{\operatorname{cc}} \alpha$.

Question

Can γ and δ be used as cornerstones in some classification theory of outer amenable group actions on Kirchberg algebras?

Thank you for your attention!

イロト 不得 トイヨト イヨト 二日

24 / 24