An introduction to C*-algebras

Workshop Model Theory and Operator Algebras
BIRS, Banff

Gábor Szabó
KU Leuven
November 2018
We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \to \mathcal{H}$. It becomes a Banach algebra with the operator norm.
We will denote by \(\mathcal{H} \) a complex Hilbert space with inner product \(\langle \cdot | \cdot \rangle \), and \(\mathcal{B}(\mathcal{H}) \) the set of all bounded linear operators \(\mathcal{H} \to \mathcal{H} \). It becomes a Banach algebra with the operator norm.

Recall

For \(a \in \mathcal{B}(\mathcal{H}) \), the adjoint operator \(a^* \in \mathcal{B}(\mathcal{H}) \) is the unique operator satisfying the formula

\[
\langle a\xi_1 | \xi_2 \rangle = \langle \xi_1 | a^*\xi_2 \rangle, \quad \xi_1, \xi_2 \in \mathcal{H}.
\]

Then the adjoint operation \(a \mapsto a^* \) is an involution, i.e., it is anti-linear and satisfies \((ab)^* = b^*a^*\).
We will denote by \mathcal{H} a complex Hilbert space with inner product $\langle \cdot | \cdot \rangle$, and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators $\mathcal{H} \to \mathcal{H}$. It becomes a Banach algebra with the operator norm.

Recall

For $a \in \mathcal{B}(\mathcal{H})$, the adjoint operator $a^* \in \mathcal{B}(\mathcal{H})$ is the unique operator satisfying the formula

$$\langle a\xi_1 | \xi_2 \rangle = \langle \xi_1 | a^* \xi_2 \rangle, \quad \xi_1, \xi_2 \in \mathcal{H}.$$

Then the adjoint operation $a \mapsto a^*$ is an involution, i.e., it is anti-linear and satisfies $(ab)^* = b^*a^*$.

Observation

One always has $\|a^*a\| = \|a\|^2$.

Proof: Since $\|a^*\| = \|a\|$ is rather immediate from the definition, “\leq” is clear. For “\geq”, observe

$$\|a\xi\|^2 = \langle a\xi | a\xi \rangle = \langle \xi | a^*a\xi \rangle \leq \|a^*a\xi\|, \quad \|\xi\| = 1.$$
Definition

An (abstract) \mathbb{C}^*-algebra is a complex Banach algebra A with an involution $a \mapsto a^*$ satisfying the \mathbb{C}^*-identity

$$\|a^*a\| = \|a\|^2, \quad a \in A.$$

We say A is unital, if there exists a unit element $1 \in A$.
Definition

An (abstract) \mathbb{C}^*-algebra is a complex Banach algebra A with an involution $a \mapsto a^*$ satisfying the \mathbb{C}^*-identity

$$\|a^* a\| = \|a\|^2, \quad a \in A.$$

We say A is unital, if there exists a unit element $1 \in A$.

Definition

A concrete \mathbb{C}^*-algebra is a self-adjoint subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$, for some Hilbert space \mathcal{H}, which is closed in the operator norm.
An (abstract) C*-algebra is a complex Banach algebra A with an involution $a \mapsto a^*$ satisfying the C*-identity

$$\|a^* a\| = \|a\|^2, \quad a \in A.$$

We say A is unital, if there exists a unit element $1 \in A$.

A concrete C*-algebra is a self-adjoint subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$, for some Hilbert space \mathcal{H}, which is closed in the operator norm.

As the operator norm satisfies the C*-identity, every concrete C*-algebra is an abstract C*-algebra.
Example

For some compact Hausdorff space X, we may consider

$$\mathcal{C}(X) = \{\text{continuous functions } X \to \mathbb{C}\}.$$

With pointwise addition and multiplication, $\mathcal{C}(X)$ becomes a **commutative** abstract C*-algebra if we equip it with the adjoint operation

$$f^*(x) = \overline{f(x)}$$

and the norm

$$\|f\|_\infty = \sup_{x \in X} |f(x)|.$$
Example

For some compact Hausdorff space X, we may consider

$$\mathcal{C}(X) = \{\text{continuous functions } X \to \mathbb{C}\}.$$

With pointwise addition and multiplication, $\mathcal{C}(X)$ becomes a **commutative** abstract \mathbb{C}^*-algebra if we equip it with the adjoint operation

$$f^*(x) = \overline{f(x)}$$

and the norm

$$\|f\|_\infty = \sup_{x \in X} |f(x)|.$$

Fact (Spectral theory)

As an abstract \mathbb{C}^-algebra, $\mathcal{C}(X)$ remembers X.*
The **goal for this lecture** is to go over the spectral theory of Banach algebras and C^*-algebras, culminating in:

Theorem (Gelfand–Naimark)

Every (unital) commutative C^-algebra is isomorphic to $C(X)$ for some compact Hausdorff space X.*
The **goal for this lecture** is to go over the spectral theory of Banach algebras and \mathbb{C}^*-algebras, culminating in:

Theorem (Gelfand–Naimark)

Every (unital) commutative \mathbb{C}^-algebra is isomorphic to $\mathcal{C}(X)$ for some compact Hausdorff space X.**

The **goal for the next lecture** is to showcase some applications, and discuss the GNS construction, in particular:

Theorem (Gelfand–Naimark–Segal)

Every abstract \mathbb{C}^-algebra can be expressed as a concrete \mathbb{C}^*-algebra.*
The **goal for this lecture** is to go over the spectral theory of Banach algebras and C^*-algebras, culminating in:

Theorem (Gelfand–Naimark)

Every (unital) commutative C^-algebra is isomorphic to $C(X)$ for some compact Hausdorff space X.***

The **goal for the next lecture** is to showcase some applications, and discuss the GNS construction, in particular:

Theorem (Gelfand–Naimark–Segal)

Every abstract C^-algebra can be expressed as a concrete C^*-algebra.***

The **goal for tomorrow** is to cover examples and advanced topics.
From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot 1$.

Observation (Neumann series)

If $x \in A$ with $\|1 - x\| < 1$, then x is invertible. In fact

$$x^{-1} = \sum_{n=0}^{\infty} (1 - x)^n.$$
From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot 1$.

Observation (Neumann series)

If $x \in A$ with $\|1 - x\| < 1$, then x is invertible. In fact

$$x^{-1} = \sum_{n=0}^{\infty} (1 - x)^n.$$

Proof:

$$x \sum_{n=0}^{\infty} (1 - x)^n = \sum_{n=0}^{\infty} ((1 - x)^n - (1 - x)^{n+1})) = 1.$$
From now on, we will assume that A is a Banach algebra with unit. We identify $\mathbb{C} \subseteq A$ as $\lambda \mapsto \lambda \cdot 1$.

Observation (Neumann series)

If $x \in A$ with $\|1 - x\| < 1$, then x is invertible. In fact

$$x^{-1} = \sum_{n=0}^{\infty} (1 - x)^n.$$

Proof: $x \sum_{n=0}^{\infty} (1 - x)^n = \sum_{n=0}^{\infty} ((1 - x)^n - (1 - x)^{n+1})) = 1$.

Observation

The set of invertibles in A is open.

Proof: If z is invertible and x is any element with $\|z - x\| < \|z^{-1}\|^{-1}$, then $\|1 - z^{-1}x\| < 1$. By the above $z^{-1}x$ is invertible, but then x is also invertible.
Definition

For an element $x \in A$, its spectrum is defined as

$$\sigma(x) = \{ \lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A \} \subseteq \mathbb{C}.$$
Definition
For an element $x \in A$, its spectrum is defined as

$$\sigma(x) = \{ \lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A \} \subseteq \mathbb{C}.$$

Elements in the spectrum may be seen as generalized eigenvalues of an operator.
Definition

For an element \(x \in A \), its spectrum is defined as

\[
\sigma(x) = \{ \lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A \} \subseteq \mathbb{C}.
\]

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

Observation

The spectrum \(\sigma(x) \) is a compact subset of \(\{ \lambda \mid |\lambda| \leq \|x\| \} \). One defines the spectral radius of \(x \) as \(r(x) = \max_{\lambda \in \sigma(x)} |\lambda| \leq \|x\| \).
Definition

For an element $x \in A$, its spectrum is defined as

$$\sigma(x) = \{ \lambda \in \mathbb{C} \mid \lambda - x \text{ is not invertible in } A \} \subseteq \mathbb{C}.$$

Elements in the spectrum may be seen as generalized eigenvalues of an operator.

Observation

The spectrum $\sigma(x)$ is a compact subset of $\{ \lambda \mid |\lambda| \leq \|x\| \}$. One defines the spectral radius of x as $r(x) = \max_{\lambda \in \sigma(x)} |\lambda| \leq \|x\|$.

Theorem

The spectrum $\sigma(x)$ of every element $x \in A$ is non-empty.

(The proof involves a non-trivial application of complex analysis.)
Definition

A character on A is a non-zero multiplicative linear functional $A \to \mathbb{C}$.

Observation

A character $\phi : A \to \mathbb{C}$ is automatically continuous, in fact $\|\phi\| = 1$.

Proof:

As ϕ is non-zero, we have $0 \neq \phi(1) = \phi(1)^2$, hence $\phi(1) = 1$.

If x were to satisfy $|\phi(x)| > \|x\|$, then $\phi(x) - x$ is invertible by the Neumann series trick. However, it lies in the kernel of ϕ, which yields a contradiction.

Definition

For commutative A, we define its spectrum (aka character space) as $\hat{A} = \{\text{characters } \phi : A \to \mathbb{C}\}$.

Due to the Banach-Alaoglu theorem, we see that the topology of pointwise convergence turns \hat{A} into a compact Hausdorff space.
Definition

A **character** on A is a non-zero multiplicative linear functional $A \to \mathbb{C}$.

Observation

A character $\varphi : A \to \mathbb{C}$ is automatically continuous, in fact $\|\varphi\| = 1$.

Proof: As φ is non-zero, we have $0 \neq \varphi(1) = \varphi(1)^2$, hence $\varphi(1) = 1$. If x were to satisfy $|\varphi(x)| > \|x\|$, then $\varphi(x) - x$ is invertible by the Neumann series trick. However, it lies in the kernel of φ, which yields a contradiction.
Definition
A **character** on \(A \) is a non-zero multiplicative linear functional \(A \to \mathbb{C} \).

Observation
A character \(\varphi : A \to \mathbb{C} \) is automatically continuous, in fact \(\| \varphi \| = 1 \).

Proof: As \(\varphi \) is non-zero, we have \(0 \neq \varphi(1) = \varphi(1)^2 \), hence \(\varphi(1) = 1 \). If \(x \) were to satisfy \(|\varphi(x)| > \| x \| \), then \(\varphi(x) - x \) is invertible by the Neumann series trick. However, it lies in the kernel of \(\varphi \), which yields a contradiction.

Definition
For **commutative** \(A \), we define its **spectrum** (aka character space) as

\[
\hat{A} = \{ \text{characters } \varphi : A \to \mathbb{C} \} .
\]

Due to the Banach-Alaoglu theorem, we see that the topology of pointwise convergence turns \(\hat{A} \) into a compact Hausdorff space.
Observation
If \(J \subset A \) is a maximal ideal in a (unital) Banach algebra, then \(J \) is closed. If \(A \) is commutative, then \(A/J \cong \mathbb{C} \) as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in \(A \). So \(\overline{J} \) is a proper ideal, hence \(J = \overline{J} \) by maximality.
Observation

If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A/J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \overline{J} is a proper ideal, hence $J = \overline{J}$ by maximality.

Part 2: The quotient is a Banach algebra in which every non-zero element is invertible. If it has a non-scalar element $x \in A/J$, then $\lambda - x \neq 0$ is invertible for all $\lambda \in \mathbb{C}$, which is a contradiction to $\sigma(x) \neq \emptyset$.

Observation
If $J \subset A$ is a maximal ideal in a (unital) Banach algebra, then J is closed. If A is commutative, then $A/J \cong \mathbb{C}$ as a Banach algebra.

Proof: Part 1: Since the invertibles are open, there are no non-trivial dense ideals in A. So \overline{J} is a proper ideal, hence $J = \overline{J}$ by maximality.

Part 2: The quotient is a Banach algebra in which every non-zero element is invertible. If it has a non-scalar element $x \in A/J$, then $\lambda - x \neq 0$ is invertible for all $\lambda \in \mathbb{C}$, which is a contradiction to $\sigma(x) \neq \emptyset$.

Observation
For commutative A, the assignment $\varphi \mapsto \ker \varphi$ is a 1-1 correspondence between \hat{A} and maximal ideals in A.

Proof: Clearly the kernel of a character is a maximal ideal as it has codimension 1 in A. Since we have $\varphi(1) = 1$ for every $\varphi \in \hat{A}$ and $A = \mathbb{C}1 + \ker \varphi$, every character is uniquely determined by its kernel. Conversely, if $J \subset A$ is a maximal ideal, then $A/J \cong \mathbb{C}$, so the quotient map gives us a character.
\(A \) is still commutative.

Theorem

Let \(x \in A \). Then

\[\sigma(x) = \left\{ \varphi(x) \mid \varphi \in \hat{A} \right\}. \]

Proof: Let \(\lambda \in \mathbb{C} \). If \(\lambda = \varphi(x) \), then \(\lambda - x \in \ker(\varphi) \), so \(\lambda - x \) is not invertible. Conversely, if \(\lambda - x \) is not invertible, then it is inside a (proper) maximal ideal. By the previous observation, this means \((\lambda - x) \in \ker \varphi \) for some \(\varphi \in \hat{A} \), or \(\lambda = \varphi(x) \).
\(A \) is still commutative.

Theorem

Let \(x \in A \). Then

\[
\sigma(x) = \{ \varphi(x) \mid \varphi \in \hat{A} \}.
\]

Proof: Let \(\lambda \in \mathbb{C} \). If \(\lambda = \varphi(x) \), then \(\lambda - x \in \ker(\varphi) \), so \(\lambda - x \) is not invertible. Conversely, if \(\lambda - x \) is not invertible, then it is inside a (proper) maximal ideal. By the previous observation, this means \((\lambda - x) \in \ker \varphi \) for some \(\varphi \in \hat{A} \), or \(\lambda = \varphi(x) \).

Theorem (Spectral radius formula)

For any Banach algebra \(A \) and \(x \in A \), one has

\[
r(x) = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}.
\]

Proof: The “\(\leq \)” part follows easily from the above (for \(A \) commutative). The “\(\geq \)” part is another clever application of complex analysis.
For commutative A, consider the usual embedding

$$\iota : A \hookrightarrow A^{**}, \quad \iota(x)(f) = f(x).$$

Since every element of A^{**} is a continuous function on $\hat{A} \subset A^*$ in a natural way, we have a restriction mapping $A^{**} \rightarrow C(\hat{A})$. The composition of these two maps yields:
For commutative A, consider the usual embedding

$$\iota : A \hookrightarrow A^{**}, \quad \iota(x)(f) = f(x).$$

Since every element of A^{**} is a continuous function on $\hat{A} \subset A^*$ in a natural way, we have a restriction mapping $A^{**} \to C(\hat{A})$. The composition of these two maps yields:

Definition (Gelfand transform)

The Gelfand transform is the unital homomorphism $A \to C(\hat{A}), \ x \mapsto \hat{x}$ given by $\hat{x}(\varphi) = \varphi(x)$.
For commutative A, consider the usual embedding

$$\iota: A \hookrightarrow A^{**}, \quad \iota(x)(f) = f(x).$$

Since every element of A^{**} is a continuous function on $\hat{A} \subset A^*$ in a natural way, we have a restriction mapping $A^{**} \to C(\hat{A})$. The composition of these two maps yields:

Definition (Gelfand transform)

The Gelfand transform is the unital homomorphism $\Lambda \to C(\hat{A}), \ x \mapsto \hat{x}$

given by $\hat{x}(\varphi) = \varphi(x)$.

Observation

The Gelfand transform is norm-contractive. In fact, for $x \in A$ we have $\hat{x}(\hat{A}) = \sigma(x)$ and hence $\|\hat{x}\| = r(x) \leq \|x\|$ for all $x \in A$.
Definition

Let A be a unital \mathbb{C}^*-algebra. An element $x \in A$ is

1. **normal**, if $x^*x = xx^*$.
2. **self-adjoint**, if $x = x^*$.
3. **positive**, if $x = y^*y$ for some $y \in A$.
 Write $x \geq 0$.
4. **a unitary**, if $x^*x = xx^* = 1$.

Definition

Let A be a unital \mathbb{C}^*-algebra. An element $x \in A$ is

1. normal, if $x^*x = xx^*$.
2. self-adjoint, if $x = x^*$.
3. positive, if $x = y^*y$ for some $y \in A$. Write $x \geq 0$.
4. a unitary, if $x^*x = xx^* = 1$.

\[\text{positive } \rightarrow \text{ self-adjoint} \]
\[\text{normal } \leftarrow \text{ positive} \]
\[\text{unitary } \Downarrow \]
Definition

Let A be a unital C^*-algebra. An element $x \in A$ is

1. normal, if $x^*x = xx^*$.
2. self-adjoint, if $x = x^*$.
3. positive, if $x = y^*y$ for some $y \in A$.
 Write $x \geq 0$.
4. a unitary, if $x^*x = xx^* = 1$.

Observation

Any element $x \in A$ can be written as $x = x_1 + ix_2$ for the self-adjoint elements

$$x_1 = \frac{x + x^*}{2}, \quad x_2 = \frac{x - x^*}{2i}.$$
Definition

Let A be a unital \mathbb{C}^*-algebra. An element $x \in A$ is

1. normal, if $x^*x = xx^*$.
2. self-adjoint, if $x = x^*$.
3. positive, if $x = y^*y$ for some $y \in A$. Write $x \geq 0$.
4. a unitary, if $x^*x = xx^* = 1$.

Observation

Any element $x \in A$ can be written as $x = x_1 + ix_2$ for the self-adjoint elements

$$x_1 = \frac{x + x^*}{2}, \quad x_2 = \frac{x - x^*}{2i}.$$

Observation

If $x \in A$ is self-adjoint, then it follows for all $t \in \mathbb{R}$ that

$$\|x + it\|^2 = \|(x - it)(x + it)\| = \|x^2 + t^2\| \leq \|x\|^2 + t^2.$$
Proposition

If \(x \in A \) *is self-adjoint, then* \(\sigma(x) \subseteq \mathbb{R} \).

Proof: Step 1: The spectrum of \(x \) inside \(A \) is the same as the spectrum of \(x \) inside its bicommutant \(A \cap \{ x \}'' \).\(^1\) As \(x \) is self-adjoint, this is a commutative \(C^* \)-algebra. So assume \(A \) is commutative.

\(^1\)This holds in any Banach algebra.
Proposition

If $x \in A$ is self-adjoint, then $\sigma(x) \subset \mathbb{R}$.

Proof: Step 1: The spectrum of x inside A is the same as the spectrum of x inside its bicommutant $A \cap \{x\}''$.\(^1\) As x is self-adjoint, this is a commutative C^*-algebra. So assume A is commutative.

Step 2: For $\varphi \in \hat{A}$, we get

$$|\varphi(x) + it|^2 = |\varphi(x + it)^2| \leq \|x\|^2 + t^2, \quad t \in \mathbb{R}.$$

But this is only possible for $\varphi(x) \in \mathbb{R}$, as the left-hand expression will otherwise outgrow the right one as $t \to (\pm)\infty$.\(^2\)

\(^1\)This holds in any Banach algebra.

\(^2\)Notice: this works for any $\varphi \in A^*$ with $\|\varphi\| = \|\varphi(1)\| = 1$!
Proposition

Let A be a commutative C^*-algebra. Then every character $\varphi \in \hat{A}$ is \ast-preserving, i.e., it satisfies $\varphi(x^*) = \overline{\varphi(x)}$ for all $x \in A$.

Proof: Write $x = x_1 + ix_2$ as before and use the above for

\[
\varphi(x^*) = \varphi(x_1 - ix_2) = \varphi(x_1) - i\varphi(x_2) = \overline{\varphi(x_1)} + i\overline{\varphi(x_2)} = \overline{\varphi(x)}.
\]
Proposition

Let A be a commutative \mathbb{C}^*-algebra. Then every character $\varphi \in \hat{A}$ is \ast-preserving, i.e., it satisfies $\varphi(x^*) = \overline{\varphi(x)}$ for all $x \in A$.

Proof: Write $x = x_1 + ix_2$ as before and use the above for

$$\varphi(x^*) = \varphi(x_1 - ix_2) = \varphi(x_1) - i\varphi(x_2) = \overline{\varphi(x_1) + i\varphi(x_2)} = \overline{\varphi(x)}.$$

Corollary

For a commutative \mathbb{C}^*-algebra A, the Gelfand transform

$$A \to \mathbb{C}(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)$$

is a \ast-homomorphism.
Let A be a C^*-algebra and $B \subseteq A$ a C^*-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.
Let A be a C^*-algebra and $B \subseteq A$ a C^*-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume $x = x^*$. We know $\sigma_B(x) \subseteq \mathbb{R}$, so
\[x_n = x + \frac{i}{n} \quad n \to \infty \] is a sequence of invertibles in B. We know
\[\|x_n - x\| < \|x_n^{-1}\|^{-1} \] implies that x is invertible in B.

Gábor Szabó (KU Leuven)
Let A be a C^*-algebra and $B \subseteq A$ a C^*-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume $x = x^*$. We know $\sigma_B(x) \subset \mathbb{R}$, so $x_n = x + \frac{i}{n} \xrightarrow{n \to \infty} x$ is a sequence of invertibles in B. We know $\|x_n - x\| < \|x_n^{-1}\|^{-1}$ implies that x is invertible in B. So if x is not invertible in B, then $\|x_n^{-1}\| \to \infty$. Since inversion is norm-continuous on the invertibles in any Banach algebra, it follows that x cannot be invertible in A.
Let A be a C^*-algebra and $B \subseteq A$ a C^*-subalgebra.

Observation

An element $x \in A$ is invertible if and only if x^*x and xx^* are invertible.

Observation

An element $x \in B$ is invertible in B if and only if it is invertible in A.

Proof: By the above we may assume $x = x^*$. We know $\sigma_B(x) \subset \mathbb{R}$, so $x_n = x + \frac{i}{n} \xrightarrow{n \to \infty} x$ is a sequence of invertibles in B. We know $\|x_n - x\| < \|x_n^{-1}\|^{-1}$ implies that x is invertible in B. So if x is not invertible in B, then $\|x_n^{-1}\| \to \infty$. Since inversion is norm-continuous on the invertibles in any Banach algebra, it follows that x cannot be invertible in A.

Corollary

We have $\sigma_B(x) = \sigma_A(x)$ for all $x \in B$.

3This often fails for inclusions of Banach algebras!
Let A be a C^*-algebra.

Observation

$x \in A$ is normal if and only if $\mathcal{C}^*(x, 1) \subseteq A$ is commutative. In this case the spectrum of $\mathcal{C}^*(x, 1)$ is homeomorphic to $\sigma(x)$.
Let A be a C^*-algebra.

Observation

$x \in A$ is normal if and only if $C^*(x, 1) \subseteq A$ is commutative. In this case the spectrum of $C^*(x, 1)$ is homeomorphic to $\sigma(x)$.

Proposition

For a normal element $x \in A$, we have $r(x) = \|x\|$.

Proof: Observe from the C^*-identity that

$$\|x\|^4 = \|x^*x\|^2 = \|x^*xx^*x\| = \|(x^2)^*x^2\| = \|x^2\|^2.$$

By induction, we get $\|x^{2n}\| = \|x\|^{2n}$. By the spectral radius formula, we have

$$r(x) = \lim_{n \to \infty} 2^n \sqrt{\|x^{2n}\|} = \|x\|.$$
Let A be a C^*-algebra.

Observation

$x \in A$ is normal if and only if $C^*(x, 1) \subseteq A$ is commutative. In this case the spectrum of $C^*(x, 1)$ is homeomorphic to $\sigma(x)$.

Proposition

For a normal element $x \in A$, we have $r(x) = \|x\|$.

Proof: Observe from the C^*-identity that
\[\|x\|^4 = \|x^*x\|^2 = \|x^*xx^*x\| = \|(x^2)^*x^2\| = \|x^2\|^2. \]

By induction, we get $\|x^{2n}\| = \|x\|^{2n}$. By the spectral radius formula, we have
\[r(x) = \lim_{n \to \infty} \sqrt[n]{\|x^{2n}\|} = \|x\|. \]

Corollary

*For all $x \in A$, we have $\|x\| = \sqrt{\|x^*x\|} = \sqrt{r(x^*x)}$.***

Gábor Szabó (KU Leuven)
Theorem (Gelfand–Naimark)

For a commutative C*-algebra A, the Gelfand transform

$$A \rightarrow \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)$$

is an isometric *-isomorphism.

Proof: We have already seen that it is a *-homomorphism.
Theorem (Gelfand–Naimark)

For a commutative \mathbb{C}^*-algebra A, the Gelfand transform

$$A \rightarrow \mathcal{C}(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)$$

is an isometric \ast-isomorphism.

Proof: We have already seen that it is a \ast-homomorphism. As every element $x \in A$ is normal, we have $\|x\| = r(x) = \|\hat{x}\|$, hence the Gelfand transform is isometric.
Theorem (Gelfand–Naimark)

For a commutative \(\mathbb{C}^* \)-algebra \(A \), the Gelfand transform

\[
A \to C(\hat{A}), \quad \hat{x}(\varphi) = \varphi(x)
\]

is an isometric \(* \)-isomorphism.

Proof: We have already seen that it is a \(* \)-homomorphism. As every element \(x \in A \) is normal, we have \(\|x\| = r(x) = \|\hat{x}\| \), hence the Gelfand transform is isometric.

For surjectivity, observe that the image of \(A \) in \(C(\hat{A}) \) is a closed unital self-adjoint subalgebra, and which separates points. By the Stone–Weierstrass theorem, it follows that it is all of \(C(\hat{A}) \).
Observation

Let $x \in A$ be a normal element in a C^*-algebra. Let $A_x = C^*(x, 1)$ be the commutative C^*-subalgebra generated by x. Then $\hat{A}_x \cong \sigma(x)$ by observing that for every $\lambda \in \sigma(x)$ there is a unique $\varphi \in \hat{A}_x$ with $\varphi(x) = \lambda$. Under this identification $\hat{x} \in \mathcal{C}(\hat{A}_x)$ becomes the identity map on $\sigma(x)$.
Observation

Let $x \in A$ be a normal element in a C*-algebra. Let $A_x = C^*(x, 1)$ be the commutative C*-subalgebra generated by x. Then $\hat{A}_x \cong \sigma(x)$ by observing that for every $\lambda \in \sigma(x)$ there is a unique $\varphi \in \hat{A}_x$ with $\varphi(x) = \lambda$. Under this identification $\hat{x} \in C(\hat{A}_x)$ becomes the identity map on $\sigma(x)$.

Theorem (functional calculus)

Let $x \in A$ be a normal element in a (unital) C*-algebra. There exists a unique (isometric) \ast-homomorphism

\[C(\sigma(x)) \to A, \quad f \mapsto f(x) \]

that sends $\text{id}_{\sigma(x)}$ to x.

Proof: Take the inverse of the Gelfand transform

\[A_x \to C(\hat{A}_x) \cong C(\sigma(x)). \]
Theorem

An element \(x \in A \) is positive if and only if \(x \) is normal and \(\sigma(x) \subseteq \mathbb{R}^{\geq 0} \).

Proof: If the latter is true, then \(y = \sqrt{x} \) satisfies \(y^*y = y^2 = x \). So \(x \) is positive. The “only if” part is much trickier.
Theorem

An element $x \in A$ is positive if and only if x is normal and $\sigma(x) \subseteq \mathbb{R}^{\geq 0}$.

Proof: If the latter is true, then $y = \sqrt{x}$ satisfies $y^* y = y^2 = x$. So x is positive. The “only if” part is much trickier.

Observation

$x = x^* \in A$ is positive if and only if $\|r - x\| \leq r$ for some (or all) $r \geq \|x\|$.
Theorem

An element \(x \in A \) is positive if and only if \(x \) is normal and \(\sigma(x) \subseteq \mathbb{R}^{\geq 0} \).

Proof: If the latter is true, then \(y = \sqrt{x} \) satisfies \(y^* y = y^2 = x \). So \(x \) is positive. The “only if” part is much trickier.

Observation

\(x = x^* \in A \) is positive if and only if \(\| r - x \| \leq r \) for some (or all) \(r \geq \| x \| \).

Corollary

For \(a, b \in A \) positive, the sum \(a + b \) is positive.

Proof: Apply the triangle inequality: We have \(\| a + b \| \leq \| a \| + \| b \| \) and

\[
\|(\| a \| + \| b \|) - (a + b)\| \leq \|\| a \| - a\| + \|\| b \| - b\| \leq \| a \| + \| b \|.
\]
Theorem

Every algebraic (unital) \(*\)-homomorphism \(\psi : A \to B\) between (unital) \(C^*\)-algebras is contractive, and hence continuous.\(^4\)

Proof: It is clear that \(\sigma(\psi(x)) \subseteq \sigma(x)\) for all \(x \in A\). By the spectral characterization of the norm, it follows that

\[
\|\psi(x)\|^2 = r(\psi(x^*x)) \leq r(x^*x) = \|x\|^2.
\]

\(^4\)This generalizes to the non-unital case as well!
Theorem

Every algebraic (unital) ∗-homomorphism \(\psi : A \to B \) between (unital) \(\mathbb{C}^* \)-algebras is contractive, and hence continuous.\(^4\)

Proof: It is clear that \(\sigma(\psi(x)) \subseteq \sigma(x) \) for all \(x \in A \). By the spectral characterization of the norm, it follows that

\[
\|\psi(x)\|^2 = r(\psi(x^*x)) \leq r(x^*x) = \|x\|^2.
\]

Observation

For \(x \in A \) normal and \(f \in \mathcal{C}(\sigma(x)) \), we have \(\psi(f(x)) = f(\psi(x)) \).

Proof: Clear for \(f \in \{\text{*polynomials}\} \). The general case follows by continuity of the assignments \([f \mapsto f(x)]\) and \([f \mapsto f(\psi(x))]\) and the Weierstrass approximation theorem.

\(^4\)This generalizes to the non-unital case as well!
Theorem

Every injective \ast-homomorphism $\psi : A \to B$ is isometric.

Proof: By the \mathbb{C}^*-identity, it suffices to show $\|\psi(x)\| = \|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\| < \|x\|$. Choose a non-zero continuous function $f : \sigma(x) \to \mathbb{R}_{\geq 0}$ with $f(\lambda) = 0$ for $\lambda \leq \|\psi(x)\|$.
Theorem

Every injective \(*\)-homomorphism \(\psi : A \to B\) is isometric.

Proof: By the \(\mathbb{C}^*\)-identity, it suffices to show \(\|\psi(x)\| = \|x\|\) for positive \(x \in A\). Suppose we have \(\|\psi(x)\| < \|x\|\). Choose a non-zero continuous function \(f : \sigma(x) \to \mathbb{R}_{\geq 0}\) with \(f(\lambda) = 0\) for \(\lambda \leq \|\psi(x)\|\).
Theorem

Every injective \ast-homomorphism $\psi : A \to B$ is isometric.

Proof: By the \mathbb{C}^*-identity, it suffices to show $\|\psi(x)\| = \|x\|$ for positive $x \in A$. Suppose we have $\|\psi(x)\| < \|x\|$. Choose a non-zero continuous function $f : \sigma(x) \to \mathbb{R}^\geq 0$ with $f(\lambda) = 0$ for $\lambda \leq \|\psi(x)\|$. Then $f(x) \neq 0$, but

$$\psi(f(x)) = f(\psi(x)) = 0,$$

which means ψ is not injective.
Definition

Let A be a C^*-algebra. A **representation** (on a Hilbert space \mathcal{H}) is a \ast-homomorphism $\pi : A \to B(\mathcal{H})$.
Definition

Let A be a C^*-algebra. A representation (on a Hilbert space \mathcal{H}) is a \ast-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$. It is said to be

1. **faithful**, if it is injective.

2. non-degenerate if $\text{span} \pi(A) \mathcal{H} = \mathcal{H}$.

3. cyclic, if there exists a vector $\xi \in \mathcal{H}$ with $\pi(A) \xi = \mathcal{H}$. For $\|\xi\| = 1$, we say that (π, \mathcal{H}, ξ) is a cyclic representation.

4. irreducible, if $\pi(A) \xi = \mathcal{H}$ for all $0 \neq \xi \in \mathcal{H}$.

Gábor Szabó (KU Leuven)
Definition

Let A be a C^*-algebra. A representation (on a Hilbert space \mathcal{H}) is a \ast-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$. It is said to be

1. faithful, if it is injective.
2. non-degenerate if $\text{span} \pi(A)\mathcal{H} = \mathcal{H}$.
Definition

Let A be a C*-algebra. A representation (on a Hilbert space \mathcal{H}) is a $*$-homomorphism $\pi : A \to B(\mathcal{H})$. It is said to be

1. faithful, if it is injective.
2. non-degenerate if $\text{span} \pi(A) \mathcal{H} = \mathcal{H}$.
3. cyclic, if there exists a vector $\xi \in \mathcal{H}$ with $\overline{\pi(A)\xi} = \mathcal{H}$. For $\|\xi\| = 1$, we say that (π, \mathcal{H}, ξ) is a cyclic representation.
Definition

Let A be a C*-algebra. A representation (on a Hilbert space \mathcal{H}) is a \ast-homomorphism $\pi : A \to \mathcal{B}(\mathcal{H})$. It is said to be

1. **faithful**, if it is injective.
2. **non-degenerate** if $\overline{\text{span}} \pi(A) \mathcal{H} = \mathcal{H}$.
3. **cyclic**, if there exists a vector $\xi \in \mathcal{H}$ with $\overline{\pi(A)\xi} = \mathcal{H}$. For $\|\xi\| = 1$, we say that (π, \mathcal{H}, ξ) is a cyclic representation.
4. **irreducible**, if $\overline{\pi(A)\xi} = \mathcal{H}$ for all $0 \neq \xi \in \mathcal{H}$.

Gábor Szabó (KU Leuven)
Let A be a \mathbb{C}^*-algebra.

Definition

A functional $\varphi : A \to \mathbb{C}$ is called **positive**, if $\varphi(a) \geq 0$ whenever $a \geq 0$.
Let A be a C^*-algebra.

Definition

A functional $\varphi : A \to \mathbb{C}$ is called **positive**, if $\varphi(a) \geq 0$ whenever $a \geq 0$.

Observation

Every positive functional $\varphi : A \to \mathbb{C}$ is continuous.

Proof: Suppose not. By functional calculus, every element $x \in A$ can be written as a linear combination of at most four positive elements

$$x = (x_1^+ - x_1^-) + i(x_2^+ - x_2^-)$$

with norms $\|x_1^+\|, \|x_1^-\|, \|x_2^+\|, \|x_2^-\| \leq \|x\|$. So φ is unbounded on the positive elements.
Let A be a C^*-algebra.

Definition

A functional $\varphi : A \rightarrow \mathbb{C}$ is called **positive**, if $\varphi(a) \geq 0$ whenever $a \geq 0$.

Observation

Every positive functional $\varphi : A \rightarrow \mathbb{C}$ is continuous.

Proof: Suppose not. By functional calculus, every element $x \in A$ can be written as a linear combination of at most four positive elements

$$x = (x_1^+ - x_1^-) + i(x_2^+ - x_2^-)$$

with norms $\|x_1^+\|, \|x_1^-\|, \|x_2^+\|, \|x_2^-\| \leq \|x\|$. So φ is unbounded on the positive elements.

Given $n \geq 1$, one may choose $a_n \geq 0$ with $\|a_n\| = 1$ and $\varphi(a_n) \geq n2^n$. Then $a = \sum_{n=1}^{\infty} 2^{-n}a_n$ is a positive element in A. By positivity of φ, we have $\varphi(a) \geq \varphi(2^{-n}a_n) \geq n$ for all n, a contradiction.
Observation

For a positive functional $\varphi : A \to \mathbb{C}$, we have $\varphi(x^*) = \overline{\varphi(x)}$.
Observation

For a positive functional $\varphi : A \to \mathbb{C}$, we have $\varphi(x^*) = \overline{\varphi(x)}$.

Corollary

For a positive functional φ, the assignment $(x, y) \mapsto \varphi(y^* x)$ defines a positive semi-definite, anti-symmetric, sesqui-linear form. In particular, it is subject to the **Cauchy–Schwarz** inequality

$$|\varphi(y^* x)|^2 \leq \varphi(x^* x) \varphi(y^* y).$$
Theorem

Let A be a unital C^*-algebra. A linear functional $\varphi : A \to \mathbb{C}$ is positive if and only if $\|\varphi\| = \varphi(1)$.

Proof: For the “only if” part, observe for $\|y\| \leq 1$ that

$$|\varphi(y)|^2 = |\varphi(1y)|^2 \leq \varphi(1)\varphi(y^*y) \leq \varphi(1)\|\varphi\|.$$

Taking the supremum over all such y yields $\|\varphi\| = \varphi(1)$.
Theorem

Let A be a unital C^*-algebra. A linear functional $\varphi : A \rightarrow \mathbb{C}$ is positive if and only if $\|\varphi\| = \varphi(1)$.

Proof: For the “only if” part, observe for $\|y\| \leq 1$ that

$$|\varphi(y)|^2 = |\varphi(1y)|^2 \leq \varphi(1)\varphi(y^*y) \leq \varphi(1)\|\varphi\|.$$

Taking the supremum over all such y yields $\|\varphi\| = \varphi(1)$.

For the “if” part, suppose $\varphi(1) = 1 = \|\varphi\|$. Let $a \geq 0$ with $\|a\| \leq 1$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$.
Theorem

Let A be a unital C^*-algebra. A linear functional $\varphi : A \to \mathbb{C}$ is positive if and only if $\|\varphi\| = \varphi(1)$.

Proof: For the “only if” part, observe for $\|y\| \leq 1$ that

$$|\varphi(y)|^2 = |\varphi(1y)|^2 \leq \varphi(1)\varphi(y^*y) \leq \varphi(1)\|\varphi\|.$$

Taking the supremum over all such y yields $\|\varphi\| = \varphi(1)$.

For the “if” part, suppose $\varphi(1) = 1 = \|\varphi\|$. Let $a \geq 0$ with $\|a\| \leq 1$. Repeating an argument we have used for characters, we know $\varphi(a) \in \mathbb{R}$. We have $\|1 - a\| \leq 1$. If $\varphi(a) < 0$, then it would necessarily follow that $\varphi(1 - a) = 1 - \varphi(a) > 1$, which contradicts $\|\varphi\| = 1$. Hence $\varphi(a) \geq 0$. Since a was arbitrary, it follows that φ is positive.
Corollary

For an inclusion of (unital) C^*-algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn–Banach and the previous slide.
Corollary

For an inclusion of (unital) \mathbb{C}^*-algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn–Banach and the previous slide.

Definition

A state on a \mathbb{C}^*-algebra is a positive functional with norm one.
Corollary

For an inclusion of (unital) C^*-algebras $B \subseteq A$, every positive functional on B extends to a positive functional on A.

Proof: Use Hahn–Banach and the previous slide.

Definition

A state on a C^*-algebra is a positive functional with norm one.

Observation

For $x \in A$ normal, there is a state φ with $\|x\| = |\varphi(x)|$.

Proof: Pick $\lambda_0 \in \sigma(x)$ with $|\lambda_0| = \|x\|$. We know $A_x = C^*(x, 1) \cong C(\sigma(x))$ so that $x \mapsto \text{id}$. The evaluation map $f \mapsto f(\lambda_0)$ corresponds to a state on A_x with the desired property. Extend it to a state φ on A.
Let A be a C^*-algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if $b - a$ is positive.
Let A be a C^*-algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if $b - a$ is positive.

Observation

- The order “\leq” is compatible with sums.
- For all self-adjoint $a \in A$, we have $a \leq \|a\|$.
- If $a \leq b$ and $x \in A$ is any element, then $x^*ax \leq x^*bx$.
Let A be a C^*-algebra.

Definition

For self-adjoint elements $a, b \in A$, write $a \leq b$ if $b - a$ is positive.

Observation

- The order “\leq” is compatible with sums.
- For all self-adjoint $a \in A$, we have $a \leq \|a\|$.
- If $a \leq b$ and $x \in A$ is any element, then $x^*ax \leq x^*bx$.

For proving the last part, write $b - a = c^*c$. Then

$$x^*bx - x^*ax = x^*(b - a)x = x^*c^*cx = (cx)^*cx \geq 0.$$
Given a state φ on A, we have observed that $(x, y) \mapsto \varphi(y^*x)$ forms a positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all $a, x \in A$, we have $\varphi(x^*a^*ax) \leq \|a\|^2 \varphi(x^*x)$. The null space $N_\varphi = \{x \in A \mid \varphi(x^*x) = 0\}$ is a closed left ideal in A.
Given a state φ on A, we have observed that $(x, y) \mapsto \varphi(y^*x)$ forms a positive semi-definite, anti-symmetric, sesqui-linear form.

Observation

For all $a, x \in A$, we have $\varphi(x^*a^*ax) \leq \|a\|^2 \varphi(x^*x)$. The null space $N_\varphi = \{x \in A \mid \varphi(x^*x) = 0\}$ is a closed left ideal in A.

Observation

The quotient $H_\varphi = A/N_\varphi$ carries the inner product

$$\langle [x] \mid [y] \rangle_\varphi = \varphi(y^*x),$$

and the left A-module structure satisfies $\|[ax]\|_\varphi \leq \|a\| \cdot \|[x]\|_\varphi$ for all $a, x \in A$.
Definition (Gelfand–Naimark–Segal construction)

For a state φ on a C*-algebra A, let \mathcal{H}_φ be the Hilbert space completion $\mathcal{H}_\varphi = \overline{H_\varphi \| \cdot \|_\varphi}$. Then \mathcal{H}_φ carries a unique left A-module structure which extends the one on H_φ and is continuous in \mathcal{H}_φ. This gives us a representation

$$\pi_\varphi : A \to B(\mathcal{H}_\varphi) \text{ via } \pi_\varphi(a)([x]) = [ax]$$

for all $a, x \in A$.
Definition (Gelfand–Naimark–Segal construction)

For a state φ on a C^*-algebra A, let \mathcal{H}_φ be the Hilbert space completion $\mathcal{H}_\varphi = \overline{H_\varphi \| \cdot \|_\varphi}$. Then \mathcal{H}_φ carries a unique left A-module structure which extends the one on H_φ and is continuous in \mathcal{H}_φ. This gives us a representation

$$\pi_\varphi : A \to \mathcal{B}(\mathcal{H}_\varphi) \quad \text{via} \quad \pi_\varphi(a)([x]) = [ax]$$

for all $a, x \in A$.

The only non-tautological part is that π_φ is compatible with adjoints. For this we observe

$$\langle [ax] | [y] \rangle_\varphi = \varphi(y^* ax) = \varphi((a^* y)^* x) = \langle [x] | [a^* y] \rangle_\varphi,$$

which forces $\pi_\varphi(a)^* = \pi_\varphi(a^*)$.
Definition (Gelfand–Naimark–Segal construction)

For a state φ on a C^*-algebra A, let H_φ be the Hilbert space completion $H_\varphi = \overline{H_\varphi \| \cdot \|_\varphi}$. Then H_φ carries a unique left A-module structure which extends the one on H_φ and is continuous in H_φ. This gives us a representation

$$\pi_\varphi : A \to \mathcal{B}(H_\varphi) \quad \text{via} \quad \pi_\varphi(a)([x]) = [ax]$$

for all $a, x \in A$.

The only non-tautological part is that π_φ is compatible with adjoints. For this we observe

$$\langle [ax] | [y] \rangle_\varphi = \varphi(y^* ax) = \varphi((a^* y)^* x) = \langle [x] | [a^* y] \rangle_\varphi,$$

which forces $\pi_\varphi(a)^* = \pi_\varphi(a^*)$.

Definition

In the (unital) situation above, set $\xi_\varphi = [1] \in H_\varphi$. Then $\|\xi_\varphi\| = 1$ as we have assumed φ to be a state.
Theorem (GNS)

The assignment \(\varphi \mapsto (\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi) \) is a 1-1 correspondence between states on \(A \) and cyclic representations modulo unitary equivalence.

Proof: Let us only check that \((\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi) \) is cyclic. Indeed,

\[
\pi_\varphi(A)\xi_\varphi = \pi_\varphi(A)([1]) = [A] = H_\varphi \subseteq \mathcal{H}_\varphi,
\]

which is dense by definition.
Theorem (GNS)

The assignment \(\varphi \mapsto (\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi) \) is a 1-1 correspondence between states on \(A \) and cyclic representations modulo unitary equivalence.

Proof: Let us only check that \((\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi) \) is cyclic. Indeed, \(\pi_\varphi(A)\xi_\varphi = \pi_\varphi(A)([1]) = [A] = H_\varphi \subseteq \mathcal{H}_\varphi \), which is dense by definition.

Theorem (Gelfand–Naimark)

Every abstract \(\mathbb{C}^* \)-algebra \(A \) is a concrete \(\mathbb{C}^* \)-algebra. In particular, there exists a faithful representation \(\pi : A \to \mathcal{H} \) on some Hilbert space.

Proof: For \(x \in A \), find \(\varphi_x \) with \(\| \varphi_x(x^*x) \| = \| x \|^2 \). Then form the cyclic representation \((\pi_{\varphi_x}, \mathcal{H}_{\varphi_x}, \xi_{\varphi_x}) \).

\[5\] If \(A \) is separable, we may choose \(\mathcal{H} \) to be separable!
Theorem (GNS)

The assignment $\varphi \mapsto (\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi)$ is a 1-1 correspondence between states on A and cyclic representations modulo unitary equivalence.

Proof: Let us only check that $(\pi_\varphi, \mathcal{H}_\varphi, \xi_\varphi)$ is cyclic. Indeed, $\pi_\varphi(A)\xi_\varphi = \pi_\varphi(A)([1]) = [A] = H_\varphi \subseteq \mathcal{H}_\varphi$, which is dense by definition.

Theorem (Gelfand–Naimark)

Every abstract C^*-algebra A is a concrete C^*-algebra. In particular, there exists a faithful representation $\pi: A \to \mathcal{H}$ on some Hilbert space.5

Proof: For $x \in A$, find φ_x with $\|\varphi_x(x^*x)\| = \|x\|^2$. Then form the cyclic representation $(\pi_{\varphi_x}, \mathcal{H}_{\varphi_x}, \xi_{\varphi_x})$. We claim that the direct sum

$$\pi := \bigoplus_{x \in A} \pi_{\varphi_x} : A \to B\left(\bigoplus_{x \in A} \mathcal{H}_{\varphi_x} \right)$$

does it. Indeed, given any $x \neq 0$ we have

$$\|\pi(x)\|^2 \geq \|\pi(x)\xi_{\varphi_x}\|^2 = \langle [x] | [x] \rangle_{\varphi_x} = \varphi_x(x^*x) = \|x\|^2.$$

5If A is separable, we may choose \mathcal{H} to be separable!
Let us now discuss noncommutative examples of \mathbb{C}^*-algebras:

Example

The set of \mathbb{C}-valued $n \times n$ matrices, denoted M_n, becomes a \mathbb{C}^*-algebra. By linear algebra, $M_n \cong \mathcal{B}(\mathbb{C}^n)$.

Let us now discuss noncommutative examples of C*-algebras:

Example

The set of \(\mathbb{C} \)-valued \(n \times n \) matrices, denoted \(M_n \), becomes a C*-algebra. By linear algebra, \(M_n \cong \mathcal{B}(\mathbb{C}^n) \).

Example

For numbers \(n_1, \ldots, n_k \geq 1 \), the C*-algebra

\[A = M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_k} \]

has finite (\(\mathbb{C} \)-linear) dimension.
Let us now discuss noncommutative examples of \(\mathbb{C}^* \)-algebras:

Example

The set of \(\mathbb{C} \)-valued \(n \times n \) matrices, denoted \(M_n \), becomes a \(\mathbb{C}^* \)-algebra. By linear algebra, \(M_n \cong \mathcal{B}(\mathbb{C}^n) \).

Example

For numbers \(n_1, \ldots, n_k \geq 1 \), the \(\mathbb{C}^* \)-algebra

\[
A = M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_k}
\]

has finite (\(\mathbb{C} \)-linear) dimension.

Theorem

Every finite-dimensional \(\mathbb{C}^ \)-algebras has this form.*
Recall

A linear map between Banach spaces $T : A \to B$ is called compact, if $T \cdot A_{\|\cdot\| \leq 1} \subseteq B$ is compact.
Examples

Recall
A linear map between Banach spaces $T : A \to B$ is called compact, if $T \cdot A_{\|\cdot\| \leq 1} \subseteq B$ is compact.

Observation
Compact operators are bounded. The composition of a compact operator with a bounded operator is compact.
Recall

A linear map between Banach spaces $T : A \to B$ is called compact, if $\overline{T \cdot A}_{\|\cdot\| \leq 1} \subseteq B$ is compact.

Observation

Compact operators are bounded. The composition of a compact operator with a bounded operator is compact.

Example

For a Hilbert space \mathcal{H}, the set of compact operators $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{B}(\mathcal{H})$ forms a norm-closed, $*$-closed, two-sided ideal. If $\dim(\mathcal{H}) = \infty$, then it is a proper ideal and a non-unital C^*-algebra.
Notation (ad-hoc!)

Let \mathcal{G} be a countable set, and let \mathcal{P} be a family of (noncommutative) \ast-polynomials in finitely many variables in \mathcal{G} and coefficients in \mathbb{C}. We shall understand a relation \mathcal{R} as a collection of formulas of the form

$$\|p(\mathcal{G})\| \leq \lambda_p, \quad p \in \mathcal{P}, \quad \lambda_p \geq 0.$$

A representation of $(\mathcal{G} \mid \mathcal{R})$ is a map $\pi : \mathcal{G} \to A$ into a \mathbb{C}^*-algebra under which the relation becomes true.
Notation (ad-hoc!)

Let \mathcal{G} be a countable set, and let \mathcal{P} be a family of (noncommutative) \ast-polynomials in finitely many variables in \mathcal{G} and coefficients in \mathbb{C}. We shall understand a relation \mathcal{R} as a collection of formulas of the form

$$\|p(\mathcal{G})\| \leq \lambda_p, \quad p \in \mathcal{P}, \quad \lambda_p \geq 0.$$

A representation of $(\mathcal{G} | \mathcal{R})$ is a map $\pi : \mathcal{G} \rightarrow A$ into a \mathbb{C}^*-algebra under which the relation becomes true.

Example

The expression $xyx^* - z^2$ for $x, y, z \in \mathcal{G}$ is a noncommutative \ast-polynomial. The relation could mean

$$\|xyx^* - z^2\| \leq 1.$$
A representation π_u of $(\mathcal{G} | \mathcal{R})$ into a C^*-algebra B is called universal, if

$$B = C^*(\pi_u(\mathcal{G})).$$

whenever $\pi: G \to A$ is a representation of $(\mathcal{G} | \mathcal{R})$ into another C^*-algebra, there exists a \ast-homomorphism $\phi: B \to A$ such that $\phi \circ \pi_u = \pi$. Up to isomorphism, a C^*-algebra B as above is unique. One writes $B = C^*(\mathcal{G})$ and calls it the universal C^*-algebra for $(\mathcal{G} | \mathcal{R})$.

Gábor Szabó (KU Leuven) C*-algebras November 2018 33 / 50
Definition

A representation π_u of $(G \mid \mathcal{R})$ into a C^*-algebra B is called universal, if

1. $B = C^*(\pi_u(G))$.

2. Whenever $\pi : G \to A$ is a representation of $(G \mid \mathcal{R})$ into another C^*-algebra, there exists a \ast-homomorphism $\varphi : B \to A$ such that $\varphi \circ \pi_u = \pi$.
Definition

A representation π_u of $(\mathcal{G} \mid \mathcal{R})$ into a C^*-algebra B is called universal, if

1. $B = C^*(\pi_u(\mathcal{G}))$.

2. whenever $\pi : \mathcal{G} \to A$ is a representation of $(\mathcal{G} \mid \mathcal{R})$ into another C^*-algebra, there exists a \ast-homomorphism $\varphi : B \to A$ such that $\varphi \circ \pi_u = \pi$.

Observation

Up to isomorphism, a C^*-algebra B as above is unique. One writes $B = C^*(\mathcal{G} \mid \mathcal{R})$ and calls it the universal C^*-algebra for $(\mathcal{G} \mid \mathcal{R})$.
Example

Given \(n \geq 1 \), one can express \(M_n \) as the universal \(\mathbb{C}^* \)-algebra generated by \(\{ e_{i,j} \}_{i,j=1}^n \) subject to the relations

\[
e_{ij} e_{kl} = \delta_{jk} e_{il}, \quad e_{ij}^* = e_{ji}.
\]
Example

Given $n \geq 1$, one can express M_n as the universal \mathbb{C}^*-algebra generated by $\{e_{i,j}\}_{i,j=1}^n$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

Example

Let \mathcal{H} be a separable, infinite-dimensional Hilbert space. Then one can express $\mathcal{K}(\mathcal{H})$ as the universal \mathbb{C}^*-algebra generated by $\{e_{i,j}\}_{i,j \in \mathbb{N}}$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$
Example

Given $n \geq 1$, one can express M_n as the universal C^*-algebra generated by $\{e_{i,j}\}_{i,j=1}^n$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

Example

Let \mathcal{H} be a separable, infinite-dimensional Hilbert space. Then one can express $\mathcal{K}(\mathcal{H})$ as the universal C^*-algebra generated by $\{e_{i,j}\}_{i,j \in \mathbb{N}}$ subject to the relations

$$e_{ij}e_{kl} = \delta_{jk}e_{il}, \quad e_{ij}^* = e_{ji}.$$

(Here e_{ij} represents a rank-one operator sending the i-th vector in an ONB to the j-th vector.)
Definition

A relation \mathcal{R} on a set \mathcal{G} is **compact** if for every $x \in \mathcal{G}$

$$\sup \{ \| \pi(x) \| \mid \pi : \mathcal{G} \to A \text{ representation of } (\mathcal{G} \mid \mathcal{R}) \} < \infty.$$
Definition

A relation \mathcal{R} on a set \mathcal{G} is **compact** if for every $x \in \mathcal{G}$

$$\sup \{ \| \pi(x) \| \mid \pi : \mathcal{G} \to A \text{ representation of } (\mathcal{G} \mid \mathcal{R}) \} < \infty.$$

Theorem

For a pair $(\mathcal{G} \mid \mathcal{R})$, the universal C^-algebra $C^*(\mathcal{G} \mid \mathcal{R})$ exists if and only if \mathcal{R} is compact.*

Proof: The “only if” part follows from the fact that $*$-homomorphisms are contractive.
Definition
A relation \mathcal{R} on a set \mathcal{G} is **compact** if for every $x \in \mathcal{G}$

$$\sup \{ \| \pi(x) \| \mid \pi : \mathcal{G} \to A \text{ representation of } (\mathcal{G} | \mathcal{R}) \} < \infty.$$

Theorem
For a pair $(\mathcal{G} | \mathcal{R})$, the universal C^*-algebra $C^*(\mathcal{G} | \mathcal{R})$ exists if and only if \mathcal{R} is compact.

Proof: The “only if” part follows from the fact that $*$-homomorphisms are contractive.

“if” part: The isomorphism classes of separable C^*-algebras form a set. There exist set-many representations $\pi : \mathcal{G} \to A_\pi$ of $(\mathcal{G} | \mathcal{R})$ on separable C^*-algebras up to conjugacy. Denote this set by I, and consider

$$\mathcal{A} = \prod_{\pi \in I} A_\pi \quad \text{and} \quad \pi_u : \mathcal{G} \to \mathcal{A}, \; \pi_u(x) = (\pi(x))_{\pi \in I}.$$

By compactness, π_u is a well-defined representation of $(\mathcal{G} | \mathcal{R})$. Then check that $B = C^*(\pi_u(\mathcal{G})) \subseteq \mathcal{A}$ is universal.
Example

The universal C*-algebra for the relation $\|xyx^* - z^2\| \leq 1$ does not exist.

Proof: Suppose we have such $x, y, z \neq 0$ in a C*-algebra, e.g., all equal to the unit. For $\lambda > 0$, replace $y \rightarrow \lambda y$ and $x \rightarrow \lambda^{-1/2}x$, and let $\lambda \rightarrow \infty$.
Example

The universal C*-algebra for the relation \(\|xyx^* - z^2\| \leq 1 \) does not exist.

Proof: Suppose we have such \(x, y, z \neq 0 \) in a C*-algebra, e.g., all equal to the unit. For \(\lambda > 0 \), replace \(y \rightarrow \lambda y \) and \(x \rightarrow \lambda^{-1/2}x \), and let \(\lambda \rightarrow \infty \).

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C*-algebra is zero! E.g., \(C^*(x \mid x^*x = -xx^*) = 0 \).
Example

The universal C*-algebra for the relation \(\|xyx^* - z^2\| \leq 1 \) does not exist.

Proof: Suppose we have such \(x, y, z \neq 0 \) in a C*-algebra, e.g., all equal to the unit. For \(\lambda > 0 \), replace \(y \rightarrow \lambda y \) and \(x \rightarrow \lambda^{-1/2}x \), and let \(\lambda \rightarrow \infty \).

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C*-algebra is zero! E.g., \(C^*(x \mid x^*x = -xx^*) = 0 \).

Example

\[
C^*(u \mid u^*u = uu^* = 1) \cong C(\mathbb{T}) \quad \text{with} \quad u \mapsto \text{id}_\mathbb{T}.
\]

Proof: Functional calculus.
Example

The universal C^*-algebra for the relation $\|xyx^* - z^2\| \leq 1$ does not exist.

Proof: Suppose we have such $x, y, z \neq 0$ in a C^*-algebra, e.g., all equal to the unit. For $\lambda > 0$, replace $y \rightarrow \lambda y$ and $x \rightarrow \lambda^{-1/2}x$, and let $\lambda \rightarrow \infty$.

Remark (Warning!)

It can easily happen that a relation is compact and non-trivial, but the universal C^*-algebra is zero! E.g., $C^*(x \mid x^*x = -xx^*) = 0$.

Example

$$C^*(u \mid u^*u = uu^* = 1) \cong C(\mathbb{T}) \quad \text{with} \quad u \mapsto \text{id}_\mathbb{T}.$$

Proof: Functional calculus.

Remark

All of this generalizes to more general relations (including functional calculus etc.) and a more flexible notion of generating sets.
Proposition

Every separable C-algebra* A *is the universal C*-algebra for a countable set of equations involving*-polynomials of degree at most 2.*
Proposition

Every separable C-algebra A is the universal C*-algebra for a countable set of equations involving *-polynomials of degree at most 2.*

Proof: Start with some countable dense \(\mathbb{Q}[i]-\)*-subalgebra \(C \subset A \). By inductively enlarging \(C \), we may enlarge it to another countable dense \(\mathbb{Q}[i]-\)*-subalgebra \(D \subset A \) with the additional property that if \(x \in D \) is a contraction, then \(y = 1 - \sqrt{1 - x^*x} \in D \).
Proposition

Every separable \mathbb{C}^*-algebra A is the universal \mathbb{C}^*-algebra for a countable set of equations involving \ast-polynomials of degree at most 2.

Proof: Start with some countable dense $\mathbb{Q}[i]$-\ast-subalgebra $C \subset A$. By inductively enlarging C, we may enlarge it to another countable dense $\mathbb{Q}[i]$-\ast-subalgebra $D \subset A$ with the additional property that if $x \in D$ is a contraction, then $y = 1 - \sqrt{1 - x^*x} \in D$.

Now let \mathcal{P} be the family of \ast-polynomials that encode all the \ast-algebra relations in D, so

$$X_aX_b - X_{ab}, \lambda X_a + X_b - X_{\lambda a+b}, X_a^* - X_{a^*},$$

for $\lambda \in \mathbb{Q}[i]$ and $a, b \in D$. Set $\mathcal{G} = D$, and let \mathcal{R} be the relation where these polynomials evaluate to zero. By construction, representations $(\mathcal{G} | \mathcal{R}) \rightarrow B$ are the same as \ast-homomorphisms $D \rightarrow B$.

Gábor Szabó (KU Leuven)
Proposition

Every separable \(C^\ast \)-algebra \(A \) is the universal \(C^\ast \)-algebra for a countable set of equations involving \(\ast \)-polynomials of degree at most 2.

Proof: (continued) By construction, representations \((\mathcal{G} \mid \mathcal{R}) \to B\) are the same as \(\ast \)-homomorphisms \(D \to B \).

We claim that the inclusion \(D \subset A \) turns \(A \) into the universal \(C^\ast \)-algebra for these relations. This means that every \(\ast \)-homomorphism from \(D \) extends to a \(\ast \)-homomorphism on \(A \). This is certainly the case if every \(\ast \)-homomorphism \(\varphi : D \to B \) is contractive.
Proposition

Every separable C^-algebra A is the universal C^*-algebra for a countable set of equations involving $*$-polynomials of degree at most 2.*

Proof: (continued) By construction, representations $(G | R) \rightarrow B$ are the same as $*$-homomorphisms $D \rightarrow B$.

We claim that the inclusion $D \subset A$ turns A into the universal C^*-algebra for these relations. This means that every $*$-homomorphism from D extends to a $*$-homomorphism on A. This is certainly the case if every $*$-homomorphism $\varphi : D \rightarrow B$ is contractive.

Indeed, if $x \in D$ is a contraction, then $y = 1 - \sqrt{1 - x^*x} \in D_{sa}$ satisfies

$$x^*x + y^2 - 2y = 0.$$

Thus also $\varphi(x)^*\varphi(x) + \varphi(y)^2 - 2\varphi(y) = 0$ in B, which is equivalent to

$$\varphi(x)^*\varphi(x) + (1 - \varphi(y))^2 = 1.$$

Hence $\|\varphi(x)\| \leq 1$ for every contraction $x \in D$, which finishes the proof.
Definition

Let Γ be a countable discrete group. The universal group C^*-algebra is defined as

$$C^*(\Gamma) = C^*(\{u_g\}_{g \in \Gamma} \mid u_1 = 1, u_{gh} = u_g u_h, u_g^* = u_{g^{-1}}).$$
Definition

Let Γ be a countable discrete group. The universal group C^*-algebra is defined as

$$C^*(\Gamma) = C^*(\{u_g\}_{g \in \Gamma} \mid u_1 = 1, u_{gh} = u_g u_h, u_g^* = u_{g^{-1}}).$$

(There is a similar but less obvious construction for non-discrete groups.)
Definition

Let Γ be a countable discrete group. The universal group C^*-algebra is defined as

$$C^*(\Gamma) = C^*(\{u_g\}_{g \in \Gamma} | u_1 = 1, u_{gh} = u_g u_h, u_g^* = u_{g^{-1}}).$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

$$C^*(\mathbb{Z}) \cong C(\mathbb{T}).$$
Definition

Let Γ be a countable discrete group. The universal group C^*-algebra is defined as

$$C^* (\Gamma) = C^* \left(\{ u_g \}_{g \in \Gamma} \mid u_1 = 1, \ u_{gh} = u_g u_h, \ u_g^* = u_{g^{-1}} \right).$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

$C^* (\mathbb{Z}) \cong C (\mathbb{T}).$

Example

The Toeplitz algebra is $\mathcal{T} = C^* \left(s \mid s^* s = 1 \right).$
Definition

Let Γ be a countable discrete group. The **universal group C^*-algebra** is defined as

$$C^*(\Gamma) = C^*\left(\{u_g\}_{g \in \Gamma} \mid u_1 = 1, \ u_{gh} = u_g u_h, \ u^*_g = u_{g^{-1}} \right).$$

(There is a similar but less obvious construction for non-discrete groups.)

Example

$$C^*(\mathbb{Z}) \cong C(\mathbb{T}).$$

Example

The **Toeplitz algebra** is $\mathcal{T} = C^*(s \mid s^* s = 1)$.

Fact

If $\nu \in B$ is any non-unitary isometry in a C^-algebra, then $C^*(\nu) \cong \mathcal{T}$ in the obvious way. In other words, every proper isometry is universal.*
Example

For \(n \in \mathbb{N} \), one defines the **Cuntz algebra** in \(n \) generators as

\[
\mathcal{O}_n = \mathbb{C}^* \left(s_1, \ldots, s_n \mid s_j^* s_j = 1, \sum_{j=1}^{n} s_j s_j^* = 1 \right).
\]
Example

For $n \in \mathbb{N}$, one defines the **Cuntz algebra** in n generators as

$$
\mathcal{O}_n = C^* \left(s_1, \ldots, s_n \mid s_j^* s_j = 1, \sum_{j=1}^{n} s_j s_j^* = 1 \right).
$$

\[\mathcal{O}_3 = C^*(s_1, s_2, s_3)\]

$$
\mathcal{H}_j = s_j \mathcal{H} \subseteq \mathcal{H}
$$
Example

For $n \in \mathbb{N}$, one defines the Cuntz algebra in n generators as

$$\mathcal{O}_n = \mathbb{C}^\ast \left(s_1, \ldots, s_n \mid s_j^* s_j = 1, \sum_{j=1}^{n} s_j s_j^* = 1\right).$$

$\mathcal{O}_3 = \mathbb{C}^\ast(s_1, s_2, s_3)$

$H_j = s_j H \subseteq H$

Theorem (Cuntz)

\mathcal{O}_n is simple! That is, every collection of isometries s_1, \ldots, s_n in any \mathbb{C}^\ast-algebra as above is universal with this property.
Fact (Inductive limits)

If

\[A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots \]

is a sequence of C*-algebra inclusions, then

\[A = \bigcup_{n \in \mathbb{N}} A_n \| \cdot \| \]

exists and is a C*-algebra.

Definition

In the above situation, if every \(A_n \) is finite-dimensional, we call \(A \) an AF algebra. (AF = approximately finite-dimensional)
Example

Consider

\[A_1 = \mathbb{C}, \quad A_2 = M_2, \quad A_3 = M_4 \cong M_2 \otimes M_2, \quad A_4 = M_8 \cong M_2 \otimes M_2, \quad \ldots, \]

with inclusions of the form \(x \mapsto x \otimes 1_2 = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \).
Example

Consider

\[A_1 = \mathbb{C}, \quad A_2 = M_2, \quad A_3 = M_4 \cong M_2 \otimes M_2, \quad A_4 = M_8 \cong M_2 \otimes^3, \quad \ldots, \]

with inclusions of the form \(x \mapsto x \otimes 1_2 = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \).

The \textbf{CAR algebra} is the limit

\[M_{2^\infty} = M_2^{\otimes \infty} = \bigcup A_n. \]
Example

Consider

\[A_1 = \mathbb{C}, \quad A_2 = M_2, \quad A_3 = M_4 \cong M_2 \otimes M_2, \quad A_4 = M_8 \cong M_2 \otimes^3, \quad \ldots, \]

with inclusions of the form \(x \mapsto x \otimes 1_2 = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \).

The **CAR algebra** is the limit

\[M_{2\infty} = M_2 \otimes^\infty = \bigcup A_n. \]

This construction can of course be repeated with powers of any other number \(p \) instead of 2. \(\leadsto M_{p\infty} \)
M_2
M_4
M_8
$M_{2\infty}$
Let A be a (unital) C^*-algebra and Γ a discrete group.

Definition

Given an action $\alpha : \Gamma \curvearrowright A$, define the **crossed product** $A \rtimes_\alpha \Gamma$ as the universal C^*-algebra containing a unital copy of A, and the image of a unitary representation $[g \mapsto u_g]$ of Γ, subject to the relation

$$u_g a u_g^* = \alpha_g(a), \quad a \in A, \ g \in \Gamma.$$
Let A be a (unital) C^*-algebra and Γ a discrete group.

Definition

Given an action $\alpha : \Gamma \curvearrowright A$, define the **crossed product** $A \rtimes_\alpha \Gamma$ as the universal C^*-algebra containing a unital copy of A, and the image of a unitary representation $[g \mapsto u_g]$ of Γ, subject to the relation

$$u_g a u_g^* = \alpha_g(a), \quad a \in A, \quad g \in \Gamma.$$

Example

Start from a homeomorphic action $\Gamma \curvearrowright X$ on a compact Hausdorff space. $\sim \mathcal{C}(X) \rtimes \Gamma$.

Gábor Szabó (KU Leuven)

C*-algebras

November 2018
Observation

For two \(\mathcal{C}^* \)-algebras \(A, B \), the algebraic tensor product \(A \odot B \) becomes a \(* \)-algebra in the obvious way.

Question

Can this be turned into a \(\mathcal{C}^* \)-algebra?
Observation

For two \mathcal{C}^*-algebras A, B, the algebraic tensor product $A \odot B$ becomes a \ast-algebra in the obvious way.

Question

Can this be turned into a \mathcal{C}^*-algebra?

Yes! However, not uniquely in general.
Observation

For two C^*-algebras A, B, the algebraic tensor product $A \otimes B$ becomes a $*$-algebra in the obvious way.

Question

Can this be turned into a C^*-algebra?

Yes! However, not uniquely in general.

Definition

We say that a C^*-algebra A is **nuclear** if the tensor product $A \otimes B$ carries a unique C^*-norm for every C^*-algebra B. In this case we denote by $A \otimes B$ the C^*-algebra arising as the completion.
Example

Finite-dimensional or commutative C^*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $C(X) \otimes A \cong C(X, A)$.
Example

Finite-dimensional or commutative C*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $C(X) \otimes A \cong C(X, A)$.

Theorem

A discrete group Γ is **amenable** if and only if $C^*(\Gamma)$ is nuclear.
Example

Finite-dimensional or commutative \mathbb{C}^*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is **amenable** if and only if $\mathbb{C}^*(\Gamma)$ is nuclear.

Example (free groups)

$\mathbb{C}^*(F_n)$ is not nuclear for $n \geq 2$.
Example

Finite-dimensional or commutative \mathcal{C}^*-algebras are nuclear. One has $M_n \otimes A \cong M_n(A)$ and $\mathcal{C}(X) \otimes A \cong \mathcal{C}(X, A)$.

Theorem

A discrete group Γ is **amenable** if and only if $\mathcal{C}^*(\Gamma)$ is nuclear.

Example (free groups)

$\mathcal{C}^*(F_n)$ is not nuclear for $n \geq 2$.

Theorem

If Γ *is amenable and* A *is nuclear, then* $A \rtimes \Gamma$ *is nuclear for every possible action* $\Gamma \curvearrowright A$. *So in particular for* $A = \mathcal{C}(X)$.
Fact (K-theory)

There is a functor

\[\{ \text{C}^*\text{-algebras} \} \longrightarrow \{ \text{abelian groups} \}, \quad A \mapsto K_* (A) = K_0 (A) \oplus K_1 (A), \]

which extends the topological K-theory functor $X \mapsto K^* (X)$ for (locally) compact Hausdorff spaces.
Fact (K-theory)

There is a functor

\[\{ \text{C}^*-\text{algebras} \} \to \{ \text{abelian groups} \}, \quad A \mapsto K_*(A) = K_0(A) \oplus K_1(A), \]

which extends the topological K-theory functor \(X \mapsto K^*(X) \) for (locally) compact Hausdorff spaces. It is **homotopy invariant** and **stable**, and has many other good properties for doing computations.
Fact (K-theory)

There is a functor

\[
\{ \text{C}^*-\text{algebras} \} \longrightarrow \{ \text{abelian groups} \}, \quad A \mapsto K_*(A) = K_0(A) \oplus K_1(A),
\]

which extends the topological K-theory functor \(X \mapsto K^*(X) \) for (locally) compact Hausdorff spaces. It is \textbf{homotopy invariant} and \textbf{stable}, and has many other good properties for doing computations.

Fact

\(K_0(A) \) has a natural \textbf{positive part} \(K_0(A)_+ \), which induces an order relation on \(K_0(A) \).
Fact (K-theory)

There is a functor

\[
\{ \text{C*-algebras} \} \longrightarrow \{ \text{abelian groups} \}, \quad A \mapsto K_\ast(A) = K_0(A) \oplus K_1(A),
\]

which extends the topological \(K\)-theory functor \(X \mapsto K_\ast(X)\) for (locally) compact Hausdorff spaces. It is **homotopy invariant** and **stable**, and has many other good properties for doing computations.

Fact

\(K_0(A)\) has a natural **positive part** \(K_0(A)_+\), which induces an order relation on \(K_0(A)\).

Theorem (Glimm, Bratteli, Elliott)

Let \(A\) and \(B\) be two (unital) AF algebras. Then

\[
A \cong B \iff (K_0(A), K_0(A)_+, [1_A]) \cong (K_0(B), K_0(B)_+, [1_B]).
\]
Definition (Elliott invariant)

For a (unital) simple C^*-algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
Definition (Elliott invariant)

For a (unital) simple C^*-algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
Definition (Elliott invariant)

For a (unital) simple C^*-algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[1_A] \in K_0(A)_+$;
Definition (Elliott invariant)

For a (unital) simple C^*-algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[1_A] \in K_0(A)_+$;
- the Choquet simplex $T(A)$ of tracial states, i.e., τ is tracial if $\tau(xx^*) = \tau(x^*x)$ for all $x \in A$;
Definition (Elliott invariant)

For a (unital) simple C^*-algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[1_A] \in K_0(A)_+$;
- the Choquet simplex $T(A)$ of tracial states, i.e., τ is tracial if $\tau(xx^*) = \tau(x^*x)$ for all $x \in A$;
- a natural pairing map $\rho_A : T(A) \times K_0(A) \to \mathbb{R}$ which is an order homomorphism in the second variable.
Definition (Elliott invariant)

For a (unital) simple C^*-algebra A, one considers

- its K-groups $K_0(A)$ and $K_1(A)$;
- the positive part $K_0(A)_+$ in $K_0(A)$;
- the distinguished element $[1_A] \in K_0(A)_+$;
- the Choquet simplex $T(A)$ of \textbf{tracial states}, i.e., τ is tracial if $\tau(x x^*) = \tau(x^* x)$ for all $x \in A$;
- a natural pairing map $\rho_A : T(A) \times K_0(A) \to \mathbb{R}$ which is an order homomorphism in the second variable.

The sextuple

$$\text{Ell}(A) = \left(K_0(A), K_0(A)_+, [1_A], K_1(A), T(A), \rho_A \right)$$

is called the \textbf{Elliott invariant} and becomes functorial with respect to a suitable target category.
Fact

There is a separable unital simple nuclear infinite-dimensional \mathbb{C}^*-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang–Su algebra, with $\text{Ell}(\mathcal{Z}) \cong \text{Ell}(\mathbb{C})$.

Rough idea: One considers the \mathbb{C}^*-algebra \mathcal{Z}_2^∞, $\mathcal{Z}_3^\infty = \{ f \in C([0,1], M_2^\infty \otimes M_3^\infty \mid f(0) \in M_2^\infty \otimes 1, f(1) \in 1 \otimes M_3^\infty \}$, which has the right K-theory but far too many ideals and traces. One constructs a trace-collapsing endomorphism on \mathcal{Z}_2^∞, \mathcal{Z}_3^∞ and can define \mathcal{Z} as the stationary inductive limit.
Fact

There is a separable unital simple nuclear infinite-dimensional C^*-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang–Su algebra, with $\text{Ell}(\mathcal{Z}) \cong \text{Ell}(\mathbb{C})$.

Rough idea: One considers the C^*-algebra

$$\mathcal{Z}_{2\infty,3\infty} = \{ f \in C([0,1], M_{2\infty} \otimes M_{3\infty}) \mid f(0) \in M_{2\infty} \otimes 1, \ f(1) \in 1 \otimes M_{3\infty} \}$$

which has the right K-theory but far too many ideals and traces.
There is a separable unital simple nuclear infinite-dimensional \mathbb{C}^*-algebra \mathcal{Z} with $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$, the Jiang–Su algebra, with $\text{Ell}(\mathcal{Z}) \cong \text{Ell}(\mathbb{C})$.

Rough idea: One considers the \mathbb{C}^*-algebra

$$\mathcal{Z}_{2\infty,3\infty} = \{ f \in C([0,1], M_{2\infty} \otimes M_{3\infty}) \mid f(0) \in M_{2\infty} \otimes 1, \; f(1) \in 1 \otimes M_{3\infty} \}$$

which has the right K-theory but far too many ideals and traces.

One constructs a **trace-collapsing** endomorphism on $\mathcal{Z}_{2\infty,3\infty}$ and can define \mathcal{Z} as the stationary inductive limit.

(Graphic created by Aaron Tikuisis.)
Definition

We say that a C^*-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.
Definition

We say that a C^*-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact

*If A is simple and the order on $K_0(A)$ satisfies a mild condition, then $\text{Ell}(A) \cong \text{Ell}(A \otimes \mathcal{Z})$.***
Definition
We say that a C^*-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact
If A *is simple and the order on* $K_0(A)$ *satisfies a mild condition, then*
$\text{Ell}(A) \cong \text{Ell}(A \otimes \mathcal{Z})$.

Conjecture (Elliott conjecture; modern version)
Let A and B be two separable unital simple nuclear \mathcal{Z}-stable C^*-algebras. Then

$$A \cong B \iff \text{Ell}(A) \cong \text{Ell}(B).$$

6To the experts in the audience: No UCT discussion now!
Definition

We say that a C^*-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact

If A is simple and the order on $K_0(A)$ satisfies a mild condition, then $\text{Ell}(A) \cong \text{Ell}(A \otimes \mathcal{Z})$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear \mathcal{Z}-stable C^*-algebras. Then

$$A \cong B \iff \text{Ell}(A) \cong \text{Ell}(B).$$

(There is a more general version not assuming unitality.)

6To the experts in the audience: No UCT discussion now!
Definition

We say that a C*-algebra A is \mathcal{Z}-stable, if $A \cong A \otimes \mathcal{Z}$.

Fact

If A is simple and the order on $K_0(A)$ satisfies a mild condition, then $\text{Ell}(A) \cong \text{Ell}(A \otimes \mathcal{Z})$.

Conjecture (Elliott conjecture; modern version)

Let A and B be two separable unital simple nuclear \mathcal{Z}-stable C*-algebras. Then

$$A \cong B \iff \text{Ell}(A) \cong \text{Ell}(B).$$

(There is a more general version not assuming unitality.)

Problem (difficult!)

Determine when $\Gamma \rtimes X$ gives rise to a \mathcal{Z}-stable crossed product.

6To the experts in the audience: No UCT discussion now!
Thank you for your attention!