KU Leuven Department of Mathematical Sciences


Publications and preprints

  1. M. Pagliero, G. Szabó: Classification of equivariantly O2-stable amenable actions on nuclear C*-algebras. arxiv:2309.12472
  2. G. Szabó, L. Wouters: Equivariant property Gamma and the tracial local-to-global principle for C*-dynamics. arxiv:2301.12846
  3. J. Gabe, G. Szabó: The stable uniqueness theorem for equivariant Kasparov theory. To appear in Amer. J. Math., arxiv:2202.09809
  4. G. Szabó: Equivariant property (SI) revisited, II. To appear in Münst. J. Math., special issue in honour of Eberhard Kirchberg, arxiv:2308.08878
  5. G. Szabó, L. Wouters: Dynamical McDuff-type properties for group actions on von Neumann algebras. To appear in J. Inst. Math. Jussieu, DOI: 10.1017/S1474748024000057, arxiv:2301.11748
  6. J. Castillejos, K. Li, G. Szabó: On tracial Z-stability of simple non-unital C*-algebras. To appear in Can. J. Math., DOI: 10.4153/S0008414X23000202, arxiv:2108.08742
  7. J. Gabe, G. Szabó: The dynamical Kirchberg-Phillips theorem. Acta Math. 232 (2024), pp. 1--77. DOI: 10.4310/ACTA.2024.v232.n1.a1, arxiv:2205.04933
  8. E. Lanckriet, G. Szabó: On embeddings of extensions of almost finite actions into cubical shifts. Colloq. Math. 174 (2023), pp. 229--240. DOI: 10.4064/cm9106-10-2023, arxiv:2202.10198
  9. G. Szabó: On a categorical framework for classifying C*-dynamics up to cocycle conjugacy. J. Funct. Anal. 280 (2021), no. 8, 66 pp. DOI: 10.1016/j.jfa.2021.108927, arxiv:1907.02388
  10. G. Szabó: Equivariant property (SI) revisited. Anal. PDE 14 (2021), no. 4, pp. 1199--1232. DOI: 10.2140/apde.2021.14.1199, arxiv:1904.10897
  11. G. Szabó: The classification of Rokhlin flows on C*-algebras. Comm. Math. Phys. 382 (2021), pp. 2015--2070. DOI: 10.1007/s00220-020-03812-2, arxiv:1706.09276
  12. D. Kerr, G. Szabó: Almost finiteness and the small boundary property. Comm. Math. Phys. 374 (2020), pp. 1--31. DOI: 10.1007/s00220-019-03519-z, arxiv:1807.04326
  13. S. Barlak, G. Szabó: Approaching the UCT problem via crossed products of the Razak-Jacelon algebra. Groups Geom. Dyn. 14 (2020), no. 1, pp. 137--149. DOI: 10.4171/GGD/538, arxiv:1712.00823
  14. S. Barlak, G. Szabó: On diagonal quasi-free automorphisms of simple Cuntz-Krieger algebras. Math. Scand. 125 (2019), no. 2, pp. 210--226. DOI: 10.7146/math.scand.a-114823, arxiv:1708.08258
  15. G. Szabó: Actions of certain torsion-free elementary amenable groups on strongly self-absorbing C*-algebras. Comm. Math. Phys. 371 (2019), no. 1, pp. 267--284. DOI: 10.1007/s00220-019-03435-2, arxiv:1807.03020
  16. G. Szabó: Rokhlin dimension: absorption of model actions. Anal. PDE 12 (2019), no. 5, pp. 1357--1396. DOI: 10.2140/apde.2019.12.1357, arxiv:1804.04411
  17. G. Szabó, J. Wu, J. Zacharias: Rokhlin dimension for actions of residually finite groups. Ergod. Th. Dyn. Syst. 39 (2019), no. 8, pp. 2248--2304. DOI: 10.1017/etds.2017.113, arxiv:1408.6096
  18. G. Szabó: Equivariant Kirchberg-Phillips-type absorption for amenable group actions. Comm. Math. Phys. 361 (2018), no. 3, pp. 1115--1154. DOI: 10.1007/s00220-018-3110-3, arxiv:1610.05939
  19. Y. Gutman, Y. Qiao, G. Szabó: The embedding problem in topological dynamics and Takens' theorem. Nonlinearity 31 (2018), no. 2, pp. 597--620. DOI: 10.1088/1361-6544/aa9464, arxiv:1708.05972
  20. G. Szabó: Strongly self-absorbing C*-dynamical systems, III. Adv. Math. 316 (2017), no. 20, pp. 356--380. DOI: 10.1016/j.aim.2017.06.008, arxiv:1612.02078
  21. G. Szabó: Strongly self-absorbing C*-dynamical systems, II. J. Noncomm. Geom. 12 (2018), no. 1, pp. 369--406. DOI: 10.4171/JNCG/279, arxiv:1602.00266
  22. G. Szabó: Strongly self-absorbing C*-dynamical systems. Trans. Amer. Math. Soc. 370 (2018), pp. 99--130. DOI: 10.1090/tran/6931, arxiv:1509.08380,
    Corrigendum: Trans. Amer. Math. Soc. 373 (2020), pp. 7527--7531. DOI: 10.1090/tran/8115
  23. I. Hirshberg, G. Szabó, W. Winter, J. Wu: Rokhlin dimension for flows. Comm. Math. Phys. 353 (2017), no. 1, pp. 253--316. DOI: 10.1007/s00220-016-2762-0, arxiv:1607.02222
  24. G. Szabó: On the nuclear dimension of strongly purely infinite C*-algebras. Adv. Math. 306 (2017), pp. 1262--1268. DOI: 10.1016/j.aim.2016.11.009, arxiv:1510.01917
  25. S. Barlak, G. Szabó, C. Voigt: The spatial Rokhlin property for actions of compact quantum groups. J. Funct. Anal. 272 (2017), no. 6, pp. 2308--2360. DOI: 10.1016/j.jfa.2016.09.023, arxiv:1605.08600
  26. S. Barlak, G. Szabó: Sequentially split *-homomorphisms between C*-algebras. Int. J. Math 27 (2016), no. 12, 48 pp. DOI: 10.1142/S0129167X16501056, arxiv:1510.04555
  27. G. Szabó: Appendix to The nuclear dimension of C*-algebras associated to homeomorphisms by I. Hirshberg and J. Wu. Adv. Math. 304 (2017), pp. 56--89. DOI: 10.1016/j.aim.2016.08.022, arxiv:1509.01508
  28. S. Barlak, G. Szabó: Rokhlin actions of finite groups on UHF-absorbing C*-algebras. Trans. Amer. Math. Soc. 369 (2017), pp. 833--859. DOI: 10.1090/tran6697, arxiv:1403.7312
  29. S. Barlak, D. Enders, H. Matui, G. Szabó, W. Winter: The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras. J. Noncommut. Geom. 9 (2015), no. 4, pp. 1383--1393. DOI: 10.4171/JNCG/226, arxiv:1312.6289
  30. G. Szabó: A short note on the continuous Rokhlin property and the universal coefficient theorem in E-theory. Canad. Math. Bull. 58 (2015), no. 2, pp. 374--380. DOI: 10.4153/CMB-2014-074-x, arxiv:1408.2365
  31. G. Szabó: The Rokhlin dimension of topological Z^m-actions. Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, pp. 673--694. DOI: 10.1112/plms/pdu065, arxiv:1308.5418

Other writings

  1. G. Szabó: Introduction to C*-algebras. In: Model theory of operator algebras, Series “Logic and its applications”, DeGruyter, 2023. DOI: 10.1515/9783110768282-001.
  2. A. Sims, G. Szabó, D. P. Williams: Operator algebras and dynamics: groupoids, crossed products, and Rokhlin dimension. Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, 2020. DOI: 10.1007/978-3-030-39713-5.
  3. G. Szabó: Introduction to the classification of group actions on C*-algebras. Extended notes for lecture series delivered at the NCGOA 2018 in Münster. Available here.
  4. G. Szabó: The stable uniqueness theorem for equivariant Kasparov theory. In "Workshop C*-Algebras": Oberwolfach Rep. 16 (2019), pp. 2257--2332. doi: 10.4171/OWR/2019/37
  5. S. Barlak, G. Szabó: Approaching the UCT problem via crossed products and Problem sessions. In "Mini-Workshop: MASAs and Automorphisms of C*-Algebras": Oberwolfach Rep. 14 (2017), no. 3, pp. 2601--2629. DOI: 10.4171/OWR/2017/42
  6. G. Szabó: Equivariant Kirchberg-Phillips-type absorption for amenable group actions. In "Workshop C*-Algebras": Oberwolfach Rep. 13 (2016), no. 3, pp. 2269--2345. DOI: 10.4171/OWR/2016/40
  7. G. Szabó: Sofic mean dimension. (Expository) In "Arbeitsgemeinschaft: Sofic Entropy", Oberwolfach Rep. 10 (2013), no. 4, pp. 2919--2961. DOI: 10.4171/OWR/2013/50

Theses

  1. Rokhlin dimension and topological dynamics, Doctoral thesis, WWU Münster, 2015. Supervised by Wilhelm Winter. (local copy)
  2. Z-stability of simple AH algebras with bounded dimension growth, Master thesis, WWU Münster, 2012. Supervised by Wilhelm Winter.
  3. Spectra of maximal commutative subalgebras of certain simple C*-algebras, Bachelor thesis, WWU Münster, 2010. Supervised by Joachim Cuntz.