E. Lanckriet, G. Szabó: On embeddings of extensions of almost finite actions into cubical shifts.
Colloq. Math. 174 (2023), pp. 229--240.
DOI: 10.4064/cm9106-10-2023,
arxiv:2202.10198
S. Barlak, G. Szabó: Approaching the UCT problem via crossed products of the Razak-Jacelon algebra.
Groups Geom. Dyn. 14 (2020), no. 1, pp. 137--149.
DOI: 10.4171/GGD/538,
arxiv:1712.00823
G. Szabó: Actions of certain torsion-free elementary amenable groups on strongly self-absorbing C*-algebras.
Comm. Math. Phys. 371 (2019), no. 1, pp. 267--284.
DOI: 10.1007/s00220-019-03435-2,
arxiv:1807.03020
G. Szabó, J. Wu, J. Zacharias: Rokhlin dimension for actions of residually finite groups.
Ergod. Th. Dyn. Syst. 39 (2019), no. 8, pp. 2248--2304.
DOI: 10.1017/etds.2017.113,
arxiv:1408.6096
G. Szabó: Equivariant Kirchberg-Phillips-type absorption for amenable group actions.
Comm. Math. Phys. 361 (2018), no. 3, pp. 1115--1154.
DOI: 10.1007/s00220-018-3110-3,
arxiv:1610.05939
Y. Gutman, Y. Qiao, G. Szabó: The embedding problem in topological dynamics and Takens' theorem.
Nonlinearity 31 (2018), no. 2, pp. 597--620.
DOI: 10.1088/1361-6544/aa9464,
arxiv:1708.05972
S. Barlak, G. Szabó, C. Voigt: The spatial Rokhlin property for actions of compact quantum groups.
J. Funct. Anal. 272 (2017), no. 6, pp. 2308--2360.
DOI: 10.1016/j.jfa.2016.09.023,
arxiv:1605.08600
G. Szabó: Appendix to The nuclear dimension of C*-algebras associated to homeomorphisms
by I. Hirshberg and J. Wu.
Adv. Math. 304 (2017), pp. 56--89.
DOI: 10.1016/j.aim.2016.08.022,
arxiv:1509.01508
S. Barlak, G. Szabó: Rokhlin actions of finite groups on UHF-absorbing C*-algebras.
Trans. Amer. Math. Soc. 369 (2017), pp. 833--859.
DOI: 10.1090/tran6697,
arxiv:1403.7312
S. Barlak, D. Enders, H. Matui, G. Szabó, W. Winter: The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras.
J. Noncommut. Geom. 9 (2015), no. 4, pp. 1383--1393.
DOI: 10.4171/JNCG/226,
arxiv:1312.6289
G. Szabó: A short note on the continuous Rokhlin property and the universal coefficient theorem in E-theory.
Canad. Math. Bull. 58 (2015), no. 2, pp. 374--380.
DOI: 10.4153/CMB-2014-074-x,
arxiv:1408.2365
G. Szabó: The Rokhlin dimension of topological Z^m-actions.
Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, pp. 673--694.
DOI: 10.1112/plms/pdu065,
arxiv:1308.5418
Other writings
G. Szabó: Introduction to C*-algebras. In: Model theory of operator algebras, Series “Logic and its applications”, DeGruyter, 2023.
DOI: 10.1515/9783110768282-001.
A. Sims, G. Szabó, D. P. Williams: Operator algebras and dynamics: groupoids, crossed products, and Rokhlin dimension.
Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser, 2020.
DOI: 10.1007/978-3-030-39713-5.
G. Szabó: Introduction to the classification of group actions on C*-algebras.
Extended notes for lecture series delivered at the NCGOA 2018 in Münster.
Available here.
G. Szabó: The stable uniqueness theorem for equivariant Kasparov theory.
In "Workshop C*-Algebras": Oberwolfach Rep. 16 (2019), pp. 2257--2332.
doi: 10.4171/OWR/2019/37
S. Barlak, G. Szabó: Approaching the UCT problem via crossed products and Problem sessions.
In "Mini-Workshop: MASAs and Automorphisms of C*-Algebras": Oberwolfach Rep. 14 (2017), no. 3, pp. 2601--2629.
DOI: 10.4171/OWR/2017/42
G. Szabó: Equivariant Kirchberg-Phillips-type absorption for amenable group actions.
In "Workshop C*-Algebras": Oberwolfach Rep. 13 (2016), no. 3, pp. 2269--2345.
DOI: 10.4171/OWR/2016/40
G. Szabó: Sofic mean dimension. (Expository)
In "Arbeitsgemeinschaft: Sofic Entropy", Oberwolfach Rep. 10 (2013), no. 4, pp. 2919--2961.
DOI: 10.4171/OWR/2013/50
Theses
Rokhlin dimension and topological dynamics, Doctoral thesis, WWU Münster, 2015. Supervised by
Wilhelm Winter.
(local copy)
Z-stability of simple AH algebras with bounded dimension growth, Master thesis, WWU Münster, 2012. Supervised by
Wilhelm Winter.
Spectra of maximal commutative subalgebras of certain simple C*-algebras, Bachelor thesis, WWU Münster, 2010. Supervised by Joachim Cuntz.